Corvinus University of Budapest
Faculty of Business Administration

Department of Computer Science

The technology trends in web development and their
effects on businesses

Author: David Naményi
BSc in Business Informatics

2016

Advisor: Blanka Lang, PhD

l. szamu melléklet

NYILATKOZAT SAJAT MUNKAROL

Név: Naményi David
E-mail cim: dnamenyi@gmail.com
NEPTUN kod: kd0Okg

A szakdolgozat cime magyarul:
A webfejlesztés technoldgiai trendjei és azok uzleti hatasai

A szakdolgozat cime angolul:
The technology trends in web development and their effects on businesses

Szakszeminarium-vezetd (vagy konzulens) neve: Dr. Lang Blanka

En, Naményi David teljes felelésségem tudataban kijelentem, hogy a jelen
szakdolgozatban szerepl6 minden szOvegrész, abra és tablazat — az el6irt
szabalyoknak megfeleléen hivatkozott részek kivételével — eredeti és kizardlag a sajat
munkam eredménye, mas dokumentumra vagy kozremikodére nem tamaszkodik.

Budapest, 2016. majus 2.

hallgaté alairasa

TEMAVEZETOI NYILATKOZAT

Alulirott Dr. Lang Blanka konzulens kijelentem, hogy a fent megjeldlt hallgaté fentiek
szerinti szakdolgozata benyujtasra alkalmas és védésre ajanlom.

Budapest, 2016. majus 2.

konzulens alairasa

Il. szamu melléklet

NYILATKOZAT
A SZAKDOLGOZAT NYILVANOSSAGAROL

Név: Naményi David

Alapszak, szak neve: Gazdasaginformatikus, BSc

Dolgozatom elektronikus valtozatanak (pdf dokumentum, a megtekintés, a mentés és a
nyomtatas engedélyezett, szerkesztés nem) nyilvanossagarol az alabbi lehetéségek

kozul kivalasztott hozzaférési szabalyzat szerint rendelkezem.

TELJES NYILVANOSSAGGAL

A konyvtari honlapon keresztul elérheté a Szakdolgozatok/TDK adatbazisban
(http://szd.lib.uni-corvinus.hu/), a vilaghalé barmely pontjarél hozzaférhetd, fentebb

jellemzett pdf dokumentum formajaban.
KORLATOZOTT NYILVANOSSAGGAL

A konyvtari honlapon keresztll elérheté a Szakdolgozatok/TDK adatbazisban
(http://szd.lib.uni-corvinus.hu/), a kizarélag a Budapesti Corvinus Egyetem tertletérél

hozzaférhetd, fentebb jellemzett pdf dokumentum formajaban.
NEM NYILVANOS

A dolgozat a BCE Kozponti Kényvtaranak nyilvantartasaban semmilyen formaban

(bibliogréfiai leiras vagy teljes szdveges valtozat) nem szerepel.

Budapest, 2016. majus 2.

a hallgato (szerzd) alairasa

Table of contents

i o = - 1o PSPPI PPURRTPRR 3
2. The evolution Of the WDcii e 4
3. The technology trends ..., 10
I B @ Lo T o I ole Y0 oo TV 1o =S PPt 10
3.2.Programming languages and technolOgiesccvevveeeiieeiiiiiiiieeccieee e 11
10 0 B o o T4} =T o T O PP PP O PPPPPOP 11

3.2.2. BACK-ENA ..ttt e 12

3.2.3. DAtabases....cciiiiiiiiii i e 15

3.3. Build your own or use an existing sOlUtion?cccoeevieiiiiniiieee e 20
3.3.1. FrameEWOTIKS cooieeeiieeieiiiiiee ettt ettt e e et e e s st e e e s aba e e e s anee s 22

3.3.2. Content management SYSTEMSuiiiiiiiiii e 25
3.4.Version CONTIOLeiiiiiieieee e e e e e s 27
3.5.5erver enVIFONMENT.......e e 28

3. 5.0, CONTAINEES . e 29

3.5.2. Operating systems and Web SErvers......ccccceeeieieiiieieieeeeiee e, 29

3.6, IVIICTOSEIVICES. ..eeeiiitieee ettt e st e e e e e s e s ab et e e e e s e e s snnsnneeeeas 32
3.7.The APLWOTIA ... e e e s bba e e e s s abees 33
3.8, SOftWAIE TESTING weeeeeeeeeeeecceeeee e et e e e e e e e et ar e e e e e e e e e e e aansraeeeeas 35
3.9. Continuous Integration and Deploymentuvvveeriiiiiniiiiieiiiiirinieieeneea... 36
3.9.1. ContinUOUS INTEGIatioNceei i 36

3.9.2. ContinUOUS DePloymMENTt....cccuuiiiiiiiiiiee et 37

3.10. DEVOPS CUIUIE cevvvrvvveiiiiieeieiterertrerseeeeresererereerrerrrreererrererrrrrerrrrrrrsrrrrrerrrrrr..... 39

4. The bUSINESS PEISPECTIVE ..eiiiiiiiiiiiciiiee ettt s e e s e bae e e e s ssbeeeeeens 41
N Y or- | - o 11 1 Y 2SO PPROPPRPRNt 41

L o 1) £ PP 43
.3 QUALITY coeeeeeeeeee e e e 44
4.4, INTEINAI PrOCESSES ..vvviiiiiiiiieeiiiiiieeeertte e e e sttt e e e ssbreeesssbeeeesssbreeeesssssseeessssseeeessnans 45
L S V=1 o PP 45

4.4.2. Flexibility and VEIOCItY ...ccvvvvvieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 46

4.4.3. People as Single Points of FAilureccoovecivieiiiciiiieceec e 47

4.4.4, EMPloyer Branding......couccueeei it e s s saaae e e 48

TR YU 0] 0 =1 V2 49
6. LiSt Of fIGUIES ccoeeeeeeeeeeeeee e, 51
7. RETEIBINCES. ..ciiiieiieeeee et 53

1. Preface

In this paper my goal is to demonstrate the evolution and the current situation and
challenges of web development, showcase a modern day web developer’s set of tools
and scrutinize the technology shifts’ effects on businesses.

Thanks to the rapid growth in its economic significance, the web has grown into a
massive industry with plenty of areas and different aspects that you need to take into
consideration when talking about web projects. For instance there is product
development, project management, information architecture, user experience design,
user interface design, system operation and software development too, not to mention
the human factors and the general business areas that also apply (e.g. finance,
accounting, marketing, sales, branding, HR, etc.).

This paper is far from being exhaustive and focuses mainly on the technical side, i.e.
development and operations. These are still very broad terms and cover numerous
different areas, each of which would deserve a book on its own due to the complexity
and depth of the questions and challenges. This is why | decided to give only a bird's
eye view of a few subjectively selected areas within the field of web development.

| aim to demonstrate briefly what the most important technologies, tools and
practices are nowadays and how the recent advancements are changing the landscape
from the business perspective. Hopefully | will also be able to shed some light on the
direction in which the industry is moving.

Some of the things | write about can be discussed in general and apply to all fields of
software development, but web development is somewhat different and unique in a
number of aspects. | myself have only gained experience in the field of web
development, so everything | write about refers to the web development environment.

Although | discuss the trends and technologies mostly in general, | write about some
personal experiences and opinions too which | have gained through the web
development projects | have been involved in at JéSzaki (the biggest Hungarian
handyman finder service), at Divide By Zero Australia (a technology and branding
agency in Sydney) and at the Digital Team of The Cyberinstitute (Brisbane, Australia).

2.The evolution of the web

| am not going to go into the specific details of the web’s history, but | am going to
mention a few important concepts and will show how closely tied its advancement is to
the advancement of the internet itself.

So first, let’s clarify what the difference is between the internet and the web. We
often use these terms interchangeably, but actually they mean different things. To
make it simple, the internet is the actual computer network that connects billions of
digital devices together globally, allowing them to transfer information with each other
via certain protocols. The web is just one of the many ways of accessing information on
the internet. It uses the HTTP protocol to allow communication and transmission of
data between applications. Using browsers is the most common way of accessing web
documents (web pages) over the internet. In this paper I'm focusing on the software
development environment in which the web pages (websites) are built and operated.
When discussing the web’s evolution, however, | need to talk about the web and the
internet at the same time because they cannot be easily separated from each other in
this context.

It is very interesting to know and see that the internet started as a limited network of
interconnected computers used primarily for military and scientific purposes and then
evolved into something way larger, the open World Wide Web, and through countless
changes and shifts finally became an essential part of our everyday lives. | must also
note that the word ‘finally’ might be misleading in this context, because the rapid
advancement of internet technology is far from reaching its peak. It appears to be
conguering new territories and revealing new ways to utilize the technology.

Kim Morrow in her 2014 UX Booth article writes that “the internet has become an
integrated, seamless, and often invisible part of our everyday lives. (...) The only thing
that seems certain is that the Internet is changing rapidly”. | think she makes a really
good point here, because it articulates not only the ever-changing nature of the
internet, but also the extent to which we have embraced it and have built our lives
upon it.

A good way of demonstrating how the level of embracement is changing is to take a
look at the different generations’ lives. Based on Harry Wallop’s article published in
2014 in The Telegraph, Generation X people were born between the early 1960s and

the early 1980s, Generation Y people were born between the early 1980s and the mid-
1990s and the members of Generation Z are those who were born like after 1996 or so.
Now, how a friend of mine explained it, Generation X know exactly when they are using
the internet and what for, Generation Y cannot distinguish between using the internet
and not using the internet, because it is such an integrated and invisible part of their
lives, and Generation Z does not even understand the question.

This process was and is being further enhanced by the fast spread of smartphones
and the rise of Internet of Things (IoT) devices, alongside with the emergence of big
data technologies and artificial intelligence solutions.

The web itself started off as simple, static HTML pages referencing each other (Web
1.0) and then evolved into the Web 2.0 era which brought dynamic, complex websites,
extended social networks and lots of user generated content, all fostering
collaboration, communication and sharing. The definition of the third generation (Web
3.0) is way less clear, some even argue whether it has already started or we are still in
the time of Web 2.0.

Based on Nova Spivack’s research at the Lifeboat Foundation, the technologies and
concepts that build up the foundation of Web 3.0 are “semantic web, microformats,
natural language search, data-mining, machine learning, recommendation agents, and
artificial intelligence technologies — which emphasize machine-facilitated
understanding of information in order to provide a more productive and intuitive user
experience.” This generation is often referred to as ‘the Semantic Web’ and ‘the
intelligent Web’. Spivack also uses a diagram to illustrate the direction of advancement
in terms of ‘Semantics of Social Connections’ and ‘Semantics of Information
Connections’:

v

The WebOS Web 4.0

= 2020 - 2030
Intelkgent personal agent:

Semantic Web Web 3.0 Distributed Search
owL ., SWRL 2010 - 2020
OpeniD AJAX SPARQL Semantic Databases

Semantic Search
p2p ROF RSS

ATOM Widgets
W b Mashups
Javascript o
soap xmL , Flash
World Wide Web HTML

HTTP Directory Portals Wilkes
Keyword Search Lightweight Collaboration

Web 1.0 Websit

2 OOﬂvce 20
Jani 2000 - 20.‘0' Weblogs Socal Media Sharing
S3aS Social Networkang

Semantics of Information Connections

BBS Gopher 1990 - 2000 RS
MMO's MacO$S saL Groupware
Desktop WindowsSGML Databases
Fie Servers
Emai PC Era

FTP IRC 1980 - 1990
USENET '

PC’'s File Systems

Semantics of Social Connections

Figure 1. ‘Semantics of Social Connections’ and ‘Semantics of Information Connections’.
Source: Spivack (2016)

In 2008 Mills Davis conducted a profound, 720-page study on the evolution of the
web, and in his short executive summary there is a great diagram that aims to capture
the essence of the web generations. The horizontal axis shows the extent of social
connectivity and the vertical axis shows the extent of knowledge connectivity and
reasoning. The Web (1.0) connected information, The Social Web (2.0) connects
people, The Semantic Web (3.0) connects knowledge and The Ubiquitous Web (4.0) is
going to connect intelligence.

Below:
What is the Evolution of the Internet to 2020?

Increasing Knowledge Connectivity & Reasoning

P2p
File Sharing

Increasing Social Connectivity
Source: Nova Spivak, Radar Networks; John Breslin, DERI; & Mills Davis, Project10X

2007, 2008 Copyright MILLS*DAVIS. All rights reserved

Figure 2. What is the Evolution of the Internet to 20207 Source: Davis (2008)

According to the statistics of www.internetlivestats.com, as of 17 April 2016 there are
approximately 3 350 500 000 internet users in the world which means that around 40%
of the world population has an internet connection today and the total number of
websites in the world is around 1 015 600 000. In Hungary the internet penetration is
estimated to be around 80.2% (in 2000 it was only 7%), while one of the most popular
Hungarian news & media website (index.hu) has about 40.6 million visits a month
(www.similarweb.com estimate, March 2016).

http://www.similarweb.com/

Total number of Websites

1,000,000,000 Bl Websites

750,000,000

500,000,000

250,000,000

0
2000 2002 2004 2006 2008 2010 2012 2014
2001 2003 2005 2007 2009 2011 2013 2015

Figure 3. Total Number of Websites. Source: NetCraft and Internet Live Stats (2016)

"Website" means uniqgue hostname (a name which can be resolved, using a name
server, into an IP Address). It must be noted that around 75% of websites today are not
active, but parked domains or similar. Periodic drops in the total count can depend on
various factors, including an improvement in NetCraft's handling of wildcard
hostnames.

Personally | think that responsive web design techniques (which make many
companies choose a mobile-friendly web Ul over a native smartphone application) and
cloud computing (which moved lots of the traditionally desktop-based applications to
the web) are certainly among the many drivers of the leap in the number of websites.

This overview of the trends sort of explains why web development has become so
vital in today’s economy. Through this huge transformation the whole web industry has
boomed - both the demand and supply sides are getting stronger and stronger. On the
one hand, almost all existing companies need either a simple online presence or
advanced web based systems and there are countless new start-ups and businesses

that are formed specifically to exploit the opportunities that the web provides. On the
other hand, many companies deliver web development service, so in order to stay
ahead of the competitors, they need to adjust their skillset, technology and efficiency
to the increased needs (both in terms of speed of delivery and quality of
implementation).

Due to the increasing expectations regarding the speed of delivery and the quality of
implementation, developers also face new challenges. Complex problems usually call
for complex solutions, and developers need new approaches, skills and tools to
maintain speed and quality.

In the following chapter | am going to showcase a slice of the recent trends,
technologies and best-practices that are shaping the modern web development
environment and then later on | will also write about how they affect the business.

3.The technology trends

In this chapter | am going to elaborate on a number of important aspects that are
necessary to consider when someone wants to run successful and high quality web
development projects. | aim to give an overview on a broad spectrum of tools and
techniques which all contribute to an effective and efficient environment. | will focus
on the concepts and advantages of each of these, rather than on the exact details of
the implementation.

3.1. Cloud computing

Since the move to cloud computing is such an apparent phenomenon in the IT world
and | am going to mention cloud solutions many times in this paper, | find it important
to clarify and define the cloud right at the beginning.

“In the simplest terms, cloud computing means storing and accessing data and
programs over the Internet instead of your computer's hard drive.” (Griffith, 2015) To
be a bit more specific and in-detail, here is the definition of cloud computing that we
can find in the book called Cloud Computing Bible (Sosinsky, 2011): “Cloud computing
refers to applications and services that run on a distributed network using virtualized
resources and accessed by common Internet protocols and networking standards. It is
distinguished by the notion that resources are virtual and limitless and that details of
the physical systems on which software runs are abstracted from the user. (...) Cloud
computing makes the long-held dream of utility computing possible with a pay-as-you-
go, infinitely scalable, universally available system. With cloud computing, you can start
very small and become big very fast. That's why cloud computing is revolutionary, even
if the technology it is built on is evolutionary.”

Cloud has become mainstream in the field of web development too - almost every
major website and web service utilizes the cloud in one way or another. Taking a look
at the analysis of the RightScale report published by Ben Kepes (2015), we can see that
Amazon Web Services (AWS) continues to dominate in public cloud by 57% adoption,
followed by Microsoft Azure, Rackspace and Google.

Throughout the paper | am going to demonstrate several cloud services and their
benefits from both the IT and the business perspective.

3.2. Programming languages and technologies

A good number of different languages and technologies are used for web
development nowadays. | am not going to detail them or compare them, especially
because such comparisons and disputes usually result in senseless flame wars without
actually finding a winner, because obviously they all have advantages and
disadvantages, similarities and differences which make it impossible to simply
benchmark them. The goal of this section is just to give an overview of the most
commonly used ones.

3.2.1. Front-end

In front-end development (also called the client side - which is responsible for the
presentation layer, the user interfaces) the situation is quite simple in terms of
programming languages. Since XHTML and Flash are mostly out of business, there are
only 3 major languages used, each in its own domain: HTML is used as the markup
language to describe the content and structure of the website, CSS is used as the
presentation language to describe the look of the website through style sheets, and
Javascript is used as the programming language to make the interfaces interactive and
provide ways for asynchronous communication with the server. Even though the map
of front-end development languages seems to be clear and simple at first glance, the
ever-growing number of libraries, extensions, tools and frameworks have made it quite
messy and complex.

In the CSS world, the situation is still relatively easy to understand: on the one hand,
there are numerous CSS frameworks and standards to make naming and usage
conventions standardized and thus the CSS code sustainable, reliable and scalable. On
the other hand, the interpreted scripting languages that can be compiled to pure CSS,
like SASS and LESS are becoming widespread. These extend CSS by providing
mechanisms available in more traditional programming languages, like variables,
functions (called mixins), logical nesting, loops and inheritance.

In the field of Javascript development, there are a lot of libraries and frameworks that
are widely used. Each has its advantage and use case. They offer things like easier
handling of the DOM, dynamic views, quicker implementation of user interfaces,
advanced animations, enhanced event handling, versatility, extensibility and the list
goes on. There are also some which provide their own syntax and can be compiled into

Javascript. To mention a few, the most popular ones include jQuery, AngularlS, React,
Babel, Coffeescript, TypeScript, ExtJS, Impress.js, Backbone.js and D3.

When a huge set of Javascript tools and libraries are used for a project, managing
these external libraries and dependencies becomes a major headache for developers.
RequirelS and Browserify have gained ground because they can effectively make it less
of a hassle by their file and module loader solutions.

Frameworks that give both CSS and Javascript solutions and components are also
mainstream. Bootstrap and Foundation are the two dominant players in the market.
They are constantly developed to enable developers use out-of-the-box, easy-to-use
solutions to the real world challenges.

Regarding HTML, templates engines are often taken advantage of in order to reduce
code duplication and have a more maintainable HTML code base. The most popular
template engines operate on the server side (e.g. Smarty, Twig, Blade) but there are
also some client side templating systems, like Mustache.js and Handlebars.js.

As the last discussed piece of the front-end development technologies, it's worth
mentioning Grunt and Gulp, which are task managers that are responsible for a lot of
the compilation and compression tasks and play a crucial part in the build processes.
They can compile SASS and LESS into CSS along with many extra functionalities (like
adding browser prefixes and compressing the resulting CSS files) and are also used to
validate, compile, concatenate and compress Javascript files.

3.2.2. Back-end

In back-end development (also called the server side - which is responsible for the
data manipulation and business logic) the selection of widely used programming
languages is a lot larger. PHP, Javascript (mainly NodelS on the server side), Ruby,
Python, Perl, Java, C#, Scala and Go are all examples of popular languages that can be
used for web development.

Gathering reliable data on their respective popularity is extremely hard, because
most of the surveys are not representative and also quite a few of the languages are
used for multiple purposes, which makes measuring the actual usage for web
development impossible. Still | would like to show some statistics that demonstrate the
situation broadly.

Stack Overflow, the huge question and answer site for programmers has been
conducting an extensive developer survey each year since 2013. These surveys reveal a
lot about the technology trends. This year (2016) more than 56.000 coders in 173
countries answered their questions, and the collected data shows that JavaScript is by
far the most popular programming language, but since its main domain is still the client
side, it does not say much about its ranking among the back-end technologies. The
following graph shows the results:

JavaScript 33.4%
SAL (or SQL Server) 49.1%
Java 36.3%
C# 30.9%
FPHFP 25.9%
Python 24.9%
Ct+t 19.4%
C 15.5%
MNode.js 17.2%
AngularJs 17.9%
Ruby 8.9%

Objective-C 6.9%

Figure 4. The most popular programming languages. Source: Stack Overflow (2016)

This data is actually not very precise regarding web development, because as | have
already mentioned, the first ranked Javascript mostly covers front-end development,
SQL is for databases, Java and C# are extensively used outside the web development
area, while C++, C and Objective-C are never or rarely used for web development. Still,
it gives a notion of the prevalence of the languages.

Taking a look at previous year’s data, the biggest change regarding the web
development languages is that PHP’s 34.8% result in 2013 shrinked to 25.9% by 2016 in
favor of emerging languages.

Gerard Millares in an article published in 2015 writes that “more than 75% of the top
websites use PHP as their server side programming language”. The source of the data is
not clear so we should have reservations about this information, but it’s interesting to
see it along with his following statement: “even though PHP is the by a far margin, the
most used server side programming language, it is amusing that when it comes to
websites that attract high traffic, Java and Javascript are the clear winners. While
around 82% of websites with Java as their server side language attract high traffic, the
value drops to below 15% for websites having PHP as their server side language”. You
can see more information about this on his diagram:

Programming Language vs High Traffic
Websites

B Percentage
of Websites
with High
Traffic

JavaScript

Python
and
Others

Figure 5. Programming Language vs High Traffic Websites. Source: Millares (2015)

In addition to the presented facts that PHP is gradually losing ground and is mainly
used for low-traffic sites, in my personal opinion PHP is also a language that is generally
perceived as a not “trendy”, not “sexy” programming language. This notion might have
been somewhat improved by the new versions of the language that introduced very

important new features and language constructs and also addressed the performance
issues and made PHP programs run way faster.

Those topics in my paper that are programming language specific assume that PHP is
used for the back-end because that’s what | am most familiar with.

Unlike in the previous front-end development section, | am not going to write about
frameworks and tools here, because they are going to be discussed later on, for
instance in Section 3.3.1.

3.2.3. Databases

There is a breadth of options when it comes to databases, and most of the key
players have been around for long and keep their positions in the market. However, as |
see it, there are some major trends happening there that are reshaping the landscape. |
am going to reveal some statistics first and then elaborate on these trends.

The Vienna-based SolidIT Consulting & Software Development GmbH has developed
an advanced algorithm, called DB-Engines Ranking, that measures the popularity of the
database systems based on publicly accessible data by using a combination of metrics.
Here is their latest data from April 2016:

303 systems in ranking, April 2016

Rank Score

Apr Mar apr DBMS Database Model Apr Mar Apr
2016 2016 2015 2016 2016 2015
1. 1. 1. Oracle Relational DBMS 1467.53 -4.48 +21.40
2. 2. 2. MySQL = Relational DBMS 1370.11 +22.39 +85.53
3. 3. 3. Microsoft SQL Server Relational DBMS 1135.05 -1.45 -14.07
4. 4. 4. MongoDB [d Document store 312.44 +7.11 +33.85
5. 5. 5. PostgreSQL Relational DBMS 303.73 +4.10 +35.41
6. 6. 6. DB2 Relational DBMS 184.08 -3.85 -13.56
7. 7. 7. Microsoft Access Relational DBMS 131.97 -3.06 -10.22
8. 8. 8. Cassandra 2 Wide column store 129.67 -0.66 +24.78
9. 9. #n10. Redis &2 Key-value store 111.24 +5.02 +16.69
10. 10. 9. SQlite Relational DBMS 107.96 +2.19 +5.67
11. 11. 4 14. Elasticsearch £ Search engine 82.58 +2.41 +17.92
12. 12. & 11. SAP Adaptive Server Relational DBMS 73.32 -3.33 -13.37
13. 13. 13. Teradata Relational DBMS 72.26 -1.81 +2.00
14. 14. J12. Solr Search engine 66.02 -3.35 -15.98
15. 15. 15. HBase Wide column store 51.49 -092 -9.65
16. 16. A 17. Hive Relational DBMS 49.08 -1.43 +6.33
17. 17. 16. FileMaker Relational DBMS 46.10 -1.83 -572
18. 18. 18. Splunk Search engine 42.35 -1.38 +4.32
19. 19. A 21. SAP HANA E3 Relational DBMS 40.35 +0.36 +7.01
20. 20. A 22. NeodjEd Graph DBMS 31.91 -0.44 +3.50
21. 722, A2s. Relational DBMS 31.58 +1.70 +9.19

MariaDB k2

Figure 6. DB-Engines Ranking. Source: SolidIT (2016)

The traditional relational database managements systems (RDMS) enjoy clear
dominance and will most probably remain strong, because they are a perfect choice in
many cases and what is more, most developers are used to working with them. The 3
top SQL-based databases currently are Oracle, MySQL and MS-SQL based on the DB-
Engines Ranking, but personally | think that specifically for web development purposes
MySQL and PostgreSQL are the two winners.

The first major trend we can see though is the rise of alternative database
technologies. In the past few years, NoSQL (also called nonrelational) databases
became very popular and widely used. But what exactly does the term mean? In the
preface of NoSQL Distilled (2012), Sadalage and Fowler explains it this way: “The term
‘NoSQL’ is very ill-defined. It's generally applied to a number of recent nonrelational
databases (...) They embrace schemaless data, run on clusters, and have the ability to
trade off traditional consistency for other useful properties. Advocates of NoSQL
databases claim that they can build systems that are more performant, scale much

better, and are easier to program with.” MongoDB, Cassandra, Redis, Riak, Neo4j,
CouchDB, HBase / Hadoop, Google Cloud Bigtable and Amazon DynamoDB are all
examples of NoSQL databases, even though they employ a number of different logical
models. A lot of, mainly large-scale, web development projects have decided to utilize
the advantages of NoSQL technologies.

Although three years ago there was only one NoSQL database in the top 10 of the
aforementioned list, now there are three (all of which is “schema-less”) which shows
that they’re gaining momentum. This graph, based on the same DB-Engines Ranking
data, captures the trends quite well:

DB-Engines Ranking Oracle
-+ MyS0L
2k Microzoft SOL Server
MongoDB
e e a4 A A e et ————+ ¥ PostgreSQL
-& DB2
1k Microsoft Access
-l Cassandra
- Redis
SQLite
" Elasticsearch

ogarithmi
{‘F
|

Score (logarithmic scale)

Jan 2013 Jul 2013 Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016

Figure 7. DB-Engines Ranking. Source: SolidIT (2016)

It is worth noting about these statistics that the calculation takes into account metrics
like search volume in Google or mentions in forums and social media. This can lead to
distorted results, because just that something is searched for or talked about does not
mean that it is actually loved and used. For example, people probably talk a lot more
about the issues of a particular system than about the happy moments, or maybe the
topic is the struggle to migrate to another, better database. Nonetheless, these figures
give a glimpse of the database market and are good enough estimations, especially

because it is virtually impossible to gain data about the number of active installations
or other relevant metrics.

The second major trend is pointed out very clearly by Pramod J. Sadalage in an article
published in 2014: “There is also movement away from using databases as integration
points in favor of encapsulating databases with applications and integrating using
services”. Instead of many applications relying on the same enormous database to
share information, the big systems are often broken down into smaller web services
with their own smaller databases, and the information sharing happens through the
services’ communication. It is very closely tied to microservices (about which | am going
to write later in Section 3.6) and also to the so-called Polyglot Persistence concept,
which is a very important result of the rise of NoSQL databases.

Polyglot Persistence means that “it is best to use multiple data storage technologies,
chosen based upon the way data is being used by individual applications or
components of a single application. Different kinds of data are best dealt with different
data stores.” (Serra, 2015) To explain both Polyglot Persistence and the encapsulation
of the database with services, | am referencing NoSQL Distilled again, because the
authors created a really good set of charts to demonstrate the process of moving from
a large relational database that is responsible for all the data (Step 1) to using different
database engines for different purposes (Step 2) and then finally wrapping those
datastores into services (Step 3):

e-commerce platform

% 1

Session
data BI/DW
Shopping Completed
cart data orders
: }
RDBMS

Figure 8. Step 1: Use of RDBMS for every aspect of storage for the application. Source:
Sadalage - Fowler (2012)

e-commerce
platform
Shopping cart Inventory Customer

and session and social

data Item Price graph
e

Completed
Key-Value Orders Graph store
store

Document
store

RDBMS
(Legacy DB)

Figure 9. Step 2: Example implementation of polyglot persistence. Source: Sadalage - Fowler
(2012)

e-commerce platform

2 %

Shopping cart Inventory
and session aed
data Item Price Customer
social graph
Completed
Orders
Session storage ‘
service Inventory and Nodes and ,

oo Order persistence Price service Relations service

service ==l
R e e

Key-Value e —_—
store Graph store
Document (Legacy DB)

store

Figure 10. Step 3: Using services instead of talking to databases. Source: Sadalage - Fowler
(2012)

The third trend that | would like to mention is that of moving databases to the cloud.
There is no big surprise here, it is just a part of the whole cloud trend, but beyond

simple database hosting, companies like Amazon and Google provide cheap fully-
managed cloud database servers that take a lot of burden off the shoulders of web
developers and operation people. To see its benefits it is enough to mention a few of
them, e.g. automated backups, automatic failure detection and recovery, software
patching, security and access control, scalability, high availability and speed.

Having seen this impressive list of benefits we can say that these services are an ideal
choice for both traditional relational and nonrelational databases. This is true and they
are widely used for lots of web development projects indeed - | also have experience
with these and | am absolutely satisfied with them so far.

However, | must note that relational and nonrelational databases have one very
important difference at this point. While a relational database is typically supposed to
run on a single machine and thus can only be scaled vertically, most of the NoSQL
databases are designed to run on a cluster of machines which makes it easy to scale
them horizontally (I am going to provide more information about the types of scaling
later in Section 4.1). It means that the cloud database services can provide an even
bigger advantage for distributed NoSQL databases by making it possible to
automatically spin up or terminate nodes based on the load.

3.3. Build your own or use an existing solution?

This is a very important question, and the answer is, of course: it depends. I'll start
with discussing the most common case and then I'll also mention the case when it can
make sense to act differently.

In my opinion, it is essential to be familiar with and know how to use third-party
services, libraries and tools, because we need to provide a large set of functionality
while maintaining fast and agile development. Nowadays web products need to satisfy
a broad spectrum of needs, and most of the time there is just not nearly enough time
and know-how to develop all those features.

Usually developers would rather build everything from scratch, but implementing
your own solutions to common problems takes a whole lot of time. And it’s not just the
time it takes to write the actual code, but also the great amount of time that you need
to invest in gaining the domain specific knowledge that you need for that particular
piece of software. What’s more, you can never perform as thorough testing and

refinement as widely used software packages have already got, because they have a
broader user and developer base that they can rely on.

As the saying goes: “Don’t reinvent the wheel!”

Package managers (for instance: Composer, Npm, Bower, Rubygems) enjoy
outstanding popularity nowadays, because they have made it easy to download, install
and update packages from external sources, and they enhanced the trend to move in
this direction. What you need to consider is whether you always want to get the latest
version of the code automatically or you want more predictability by making sure that
the underlying codebase does not change between releases. It depends on the
situation, but | think that in most cases the best way to go is manually updating the
external packages regularly to get the bug fixes and improvements and having tests
that ensure that the new version behaves the same way the previous version did.

There are many cloud services available out there that you can integrate to your
workflow by connecting to it through an API. If you need to have full control over the
service, in many cases you can choose to install it on your own server instance instead
of using the cloud version. By hosting it, you take over some of the pain of operations
but it can be necessary for some network security and availability concerns.

It is strongly recommended to use only properly tested, reliable, well-documented
third party libraries, tools, services and APIs. | have had some bad experiences with
services that were in an early stage and had not been used and tested out in the wild
yet. It means that we wasted lots of time and money both on the integration (poorly
documented endpoints, a good number of emerging issues), on the bug fixing and on
moving on to a more stable service and doing a major clean-up and refactor in our
code.

Choosing a good library or service in and of itself will not necessarily take you ahead
of the curve because many others use them. Utilizing these in the right combination,
however, might give you a competitive advantage. It is important to understand what
each of these tools are designed for, what their strengths and weaknesses are, how
they integrate with the packages that are already in use and how you can tailor them to
your specific needs.

Above a certain size and complexity, it might make sense to build our own version of
the third party libraries and tools to make it a perfect fit for our needs and decrease

dependency on others. | have seen it happening at bigger projects, that in the
beginning they decided to use a third-party solution for something, but then later on,
as the project grew and they wanted to be more independent and wanted to have even
better performance, they started building their own tools. Obviously, it can only
happen when you can afford it both in terms of financials and know-how.

3.3.1. Frameworks

This topic is also part of the “Build your own or use an existing solution?” question.
Just as libraries, modules, tools and external services, nowadays frameworks are also
widespread and play a substantial role in web development projects. How do they
contribute to the success of a project?

“Frameworks are about efficiency and effectiveness. They save you time. By forcing
common conventions, a framework helps solve common issues like view rendering,
asset generation, security, application configurations -- things that happen in every web
application. This is good. It brings consistency to decisions. Instead of implementing a
feature by writing a number of custom modules, all we have to do is implement it the
way the framework wants us to. This saves us time and headaches, and makes the
development process easier.” (Megyesi, 2012) And this list of benefits is far from being
exhaustive, it could go on with numerous challenges and problems that they provide
built-in solutions for. There is also another important factor which | will write about in
the People as Single Points of Failure section (Section 4.4.3).

Megyesi mentions an interesting disadvantage too that is worth bearing in mind:
“because frameworks are so good at making decisions for us, we get lazy. Instead of
thinking hard about how to build a clean system with crisp abstractions, we think about
what the framework would want us to do, regardless of whether the resulting code is
clean.”

Talking about web development frameworks, the MVC pattern (Model - View -
Controller) is a crucial concept as it has been mainstream for a long time and lies under
a very big chunk of the world’s websites. When used properly, it can simplify the
development and increase the quality and maintainability of the code base. Krzysztof
Rakowski in a 2011 Smashing Magazine article explains the pattern briefly by saying
that “MVC is a software architecture that allows for the separation of business logic
from the user interface. In this architecture, the user sees and interacts with the view

that, in the case of Web applications, is generated HTML code (along with JavaScript,
CSS, images, etc.) User actions are passed (as HTTP requests, GET or POST methods) to
the controller. The controller is a piece of code that handles and processes user input
and then reads and makes necessary changes to the model, which is responsible for the
storage and modification of data. (In simple terms, the model consists of the database
structure and contents, and the code used to access it.) Then, the controller generates
the proper view that will be sent and displayed to user. “

Model
Dataandlogic |<—
updates modifies
47 modifies
View Controller
Interface User input
sends input events ?

Figure 11. MVC pattern (Model - View - Controller). Source: Moock.org (2016)

Regarding PHP, there are a couple of very strong competitors in the field of
frameworks. Obviously, just the same way as for all the other topics in this paper, it is
practically impossible to gather reliable data on the actual usage and popularity of the
key players, but | have found two sets of data that are worth presenting. The first is the
result of the 2015 edition of the annual SitePoint framework popularity survey which
Bruno Skvorc published at the end of March 2015:

PHP Framework Popularity at Work - SitePoint, 2015

Aura

Drupal

TYPO3 Flow

FuelPHP

Kohana

Typo 3

Simple MVC Framework
Silex

Slim

Phalcon

We use a CMS for everything

No Framework

Framework

CakePHP

Zend Framework 1
Company Internal Framework
Zend Framework 2
Yii 1

PHPixie

Yii 2

Codelgniter

Nette

Symfony2

Laravel

0 200 400 600 800 1000 1200 1400 1600

Votes

Figure 12. PHP Framework Popularity at Work. Source: Skvorc (2015)

The impressive ranking of Nette and PHPixie is a bit surprising and might be down to
the relatively small sample size and the attention of their communities at that given
time which might have led them to active participation in the survey. The order of
Laravel, Symfony2, Codelgniter and Yii 2 appears to be a more realistic result.

| also collected data using Google Trends and visualized the results. The graph simply
shows the web search interest over time for the given keywords between 1 January
2006 and 23 April 2016:

— 24 —

Web search interest over time for PHP frameworks

From 1 January 2006 to 23 April 2016
120

A |' "'l"'llll"l]'Jll M
| | | "r'v"f“b| W "
gy e A

], W I '|

codeigniter

Y

gl zend framework
oL "|"|“

40 J il -|-|..'v-"' v

1 cakephp
) ——laravel
—— symfony

——phalcon

—

=

—fuelphp

Data source:
Google Trends

2007-02-25 - 2007-03-03
2010-12-26- 2011-01-01
2012-11-25- 2012-12-01

2006-01-01 - 2006-01-07
2006-05-21 - 2006-05-27
2006-10-08 - 2006-10-14
2007-07-15 - 2007-07-21
2007-12-02 - 2007-12-08
2008-04-20 - 2008-04-26
2008-09-07 - 2008-0%-13
2009-01-25 - 2009-01-31
2008-06-14 - 2009-06-20
2009-11-01 - 2009-11-07
2010-03-21 - 2010-03-27
2010-08-08 - 2010-08-14
2011-05-15 - 2011-05-21
2011-10-02 - 2011-10-08
2012-02-19- 2012-02-25
2012-07-08 - 2012-07-14
2013-04-14 - 2013-04-20
2013-09-01 - 2013-09-07
2014-01-19 - 2014-01-25
2014-06-08 - 2014-06-14
2014-10-26- 2014-11-01
2015-03-15 - 2015-03-21
2015-08-02 - 2015-08-08
2015-12-20- 2015-12-26

Figure 13. Web search interest over time for PHP frameworks. (My own work, 2016)

This chart does not take the different versions of these frameworks into
consideration, but still shows the major trends in the market: Symfony and Codelgniter
have been strong for a quite long time while Laravel appeared from nowhere and took
the lead by an extremely fast increase in popularity. Yii, CakePHP and Zend Framework,
on the contrary, are gradually losing ground in favor of others.

3.3.2. Content management systems

As the last point in this section, | would like to show the current landscape in a
crowded niche market: the content management systems (CMSs), which are widely
used for various purposes. Even though web developers who prefer crafting bespoke
software tend to despise the common content management systemes, it is clear that
both the demand and the supply remains strong in the CMS market and they mean a
perfect solution for lots and lots of projects.

As usual, there is no precise usage data available due to the complexity of
measurement, but the statistics are good enough to point out the key players in the
market. The data collected by W3Techs.com shows that as of April 2016 Wordpress has
approximately 59.4% market share and interestingly it powers over 26% of all the
websites in the world.

change since market change since
© W3Techs.com usage 1 March 2016 share 1 March 2016

1. WordPress 26.4% +0.4% 59.4% +0.2%
2. Joomla 2.7% 6.1% -0.1%
3. Drupal 2.2% 4.9%

4. Magento 1.3% 2.8% -0.1%
5. Blogger 1.2% 2.7% -0.1%

percentages of sites

Figure 14. Most popular content management systems. Source: W3Techs.com (2016)

The global OpenSource CMS information provided by the Wappalyzer browser add-on
which covers roughly 1% of the entire web leads to the same conclusion that, as of

April 2016, Wordpress, Joomla and Drupal are the major competitors, and Wordpress is
enjoying significant dominance.

Market share

Other: 10 %
CMS Made Simple : 0 % \

SPIP : 0 %
Contao: 0 % ——

3 N
Concrete5: 0 % \\Q\

Liferay : 0 % \
DotNetNuke : 1 % ~~
TYPO3:2 % y .

\ WordPress ; 68 %

Figure 15. Market share of CMS systems. Source: OpenSource CMS (2016)

3.4. Version control

Version control and Git are common buzzwords in the developer scene. | don’t think
many would argue with saying that nowadays version control is an absolute must for
every web development project, and fortunately even amateur developers and
developers of small-scale projects tend to use it as a foundation for the code base. But
what does version control mean?

"Version control is a system that records changes to a file or set of files over time so
that you can recall specific versions later. For the examples (...) software source code as
the files being version controlled, though in reality you can do this with nearly any type
of file on a computer. (...) It allows you to revert files back to a previous state, revert
the entire project back to a previous state, compare changes over time, see who last
modified something that might be causing a problem, who introduced an issue and
when, and more. Using a VCS (Version Control System) also generally means that if you
screw things up or lose files, you can easily recover. In addition, you get all this for very
little overhead.” (Chacon - Straub, 2014)

There are centralized (e.g. CVS, Perforce, SVN) and distributed (e.g. Git, Mercurial)
VCSs. “The main difference between the two classes is that Centralized VCSs keep the
history of changes on a central server from which everyone requests the latest version
of the work and pushes the latest changes to. On the other hand, on a Distributed VCS,
everyone has a local copy of the entire work’s history. This means that it is not
necessary to be online to change revisions or add changes to the work.” (Vergara,
2012).

| personally prefer using Distributed VCS, Git to be specific, and as | see, the trends
are all going in this direction, especially because the majority of the open-source
projects use Git.

Git is the actual command line tool that we can use locally to version control our files.
We can also set it up on a server and use it as a remote repository where we can push
our changes or, not surprisingly, we can also use a cloud repository as the remote.

What makes the well-known cloud repository services (e.g. Github, Gitlab, Bitbucket)
particularly interesting is that not only do they provide a repository hosting service but
they also provide an extensive service package built around the Git technology. Most of
them have collaboration and communication features, wikis and issue tracking

capabilities, plugins for integration with other software products, continuous
integration tools and even free or cheap hosting of websites. What’s more, Github has
managed to build a huge and active community that contributes to the success of lots
of open-source projects.

3.5. Server environment

Having discussed how cloud is gaining ground in the industry, it is no surprise that in
the past few years the biggest part of the server infrastructure that is behind the
majority of the websites in the world has moved to the cloud too. Hosting a website on
a cloud server has numerous advantages over traditional solutions and thus has
become mainstream.

There are many popular providers that make a broad variety of of Software as a
Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (laaS)
services available to developers. | am not going to elaborate on all these different kinds
of services and providers, but | would like to mention Amazon Web Services (AWS),
Microsoft Azure, Rackspace, Google Cloud Platform, Heroku, DigitalOcean and
OpenShift to name a few of the most popular providers.

To illustrate the wide range of solutions briefly, | am going to write a few examples
about what is possible with Amazon Web Services. | am sure that these things can also
be achieved by other providers, but AWS is the one that | personally have experience
with.

Instead of buying and maintaining your own server, you can use the virtual private
servers available in the AWS Elastic Compute Cloud (EC2) service. You can spin up new
instances in minutes and can also tailor them to your specific needs (e.g. configuration
of memory, CPU, instance storage and boot partition size). You have full control over
the virtual server instances and can configure custom security groups and access levels.
What is more, the Amazon EC2 Service Level Agreement ensures 99.95% availability
which would be quite hard and expensive to achieve on your own server. You are not
even bound to a single physical location because you can launch instances in quite a
few different locations (so-called regions) around the globe. Domain name and DNS
management is not a problem either thanks to the AWS Route 53 service.

AWS also makes it easy to scale up and down the performance of our instances and
even to launch or terminate instances automatically based on a set of rules. They also

have a great load balancing service as well as monitoring and reporting services.
Scalable content storage and content delivery network are also available in the set, as
well as an email sending service (which takes a burden of installing a mail server off
your shoulders), notification service, queue service, continuous deployment, container,
database and cache services.

Even without going into details we can get a glimpse of how the various challenges
can be solved with relative ease and low costs in a modern web development
environment.

3.5.1. Containers

Beyond the virtualization and cloud dominance, containerization is also a very
prominent trend nowadays. This technology is not new at all, but it wasn’t very widely
used before 2013 when Docker, Inc announced, launched and open-sourced its
container engine.

“Container virtualization is often called operating system-level virtualization.
Container technology allows multiple isolated user space instances to be run on a single
host. (...) Docker is an open-source engine that automates the deployment of
applications into containers. (...) So what is special about Docker? Docker adds an
application deployment engine on top of a virtualized container execution
environment. It is designed to provide a lightweight and fast environment in which to
run your code as well as an efficient workflow to get that code from your laptop to your
test environment and then into production. (...) Docker aims to reduce the cycle time
between code being written and code being tested, deployed, and used. It aims to
make your applications portable, easy to build, and easy to collaborate on.” (Turnbull,
2014)

Since it is a great and useful technology, companies started adopting it rapidly and
within less than 3 years it has become extremely popular.

3.5.2. Operating systems and web servers

Finally, let us take a look at what operating systems run typically on servers used for
web development and which web servers are in use.

According to the data collected by W3Techs, as of 30 April 2016 67.8% of the
websites using Unix-based operating systems (among which Linux is said to be the most

popular), 32.2% of the websites use Windows and Apple’s OS X is used by less than
0.1% of the websites.

67.8%

W3Techs.com, 30 April 2016

Percentages of websites using various operating systems
Note: a website may use more than one operating system

Figure 16. Usage of operating systems for websites. Source: W3Techs (2016)

From Netcraft’s March 2016 Web Server Survey we can see that 32.4% percent of all
the websites in the world were running on Apache webserver, not much ahead of
Microsoft IIS. Nginx and Google Web Server (GWS) are also in the top 4.

Web server developers: Market share of all sites
ﬁ —— Apache
ETCRAFT
M

80%

—— Microsoft
Sun

60% .
— nginx

—— Google
—— NCSA

0,
40% —— Qther

20%

0%

O of ol 0@ o0 N o oD ok @ ol oD 0O A0 AN D AN WD
Q7 20 (' 40P A0V AR A RF AR AT AARC AED! AA0P AA0P 40N 40N 0N N Ao
%“Q\ o \OGG "?e‘o\ PQ‘% 5@'2, P&g@ 00‘10 ec_‘l? o7 ?9"1 5\){\'?. P“Ql 00\1060% o7 oo v \ o

Figure 17. Web server developers: Market share of all sites. Source: NetCraft (2016)

Developer March 2016 Percent

Apache 325,285,185 32.40%
Microsoft 317,761,318 31.65%
nginx 143,464,293 14.29%
Google 20,790,767 2.07%

Figure 18. Web server developers: Market share of all sites. Source: NetCraft (2016)

What is interesting is that these results are significantly different for the top million
busiest websites:

Web server developers: Market share of the top million busiest sites

[IETCRAFT ~ Apache

—— Microsoft
—— Qther

= nginx

80%

60%
—— Google

40%

20% @ ——— //

Y, —
0% /
@ 9 ® A0 w0 1 W S 5 D D
00000000‘\0‘\‘\0‘\0‘\0‘\00’\0’\00\0\0\0\0\
0T D e Rt T et B B e R B e oo P e B oo B

Figure 19. Web server developers: Market share of the top million busiest sites. Source:

NetCraft (2016)
Developer March 2016 Percent
Apache 455,428 45.54%
nginx 251,440 25.14%
Microsoft 113,585 11.36%
Google 20,266 2.03%

Figure 20. Web server developers: Market share of the top million busiest sites. Source:
NetCraft (2016)

The chart also shows that nginx’s market share is massively increasing among the top
performers of the industry.

3.6. Miicroservices

The term microservices is the latest buzzword in web development that you hear
about every day multiple times and there is no conference or meetup event where it is
not mentioned or talked about. However, just that the term is overused, does not
mean that it has lost its power - in fact, countless development teams are considering
or are actively working on moving to a microservice-based architecture, not to mention
the companies that had already embraced the idea years ago.

The concept is very much the same as what | have already written about in the
Databases section (Section 3.2.3) in relation with Polyglot Persistence. The main idea is
splitting the big monolith systems into smaller, independent modules (services) that
communicate with each other (typically via RESTful interfaces).

“Microservices are an approach to distributed systems that promote the use of finely
grained services with their own lifecycles, which collaborate together. Because
microservices are primarily modeled around business domains, they avoid the
problems of traditional tiered architectures. Microservices also integrate new
technologies and techniques that have emerged over the last decade, which helps
them avoid the pitfalls of many service-oriented architecture implementations. (...)
Microservices are small, autonomous services that work together.” (Newman, 2015)

Benjamin Wootton in a 2016 article writes about various benefits of microservices.
For example, “in a Microservice architecture, you should be able to deliver new
functionality and iterate on the system faster than you would be able to on a more
monolithic architecture. (...) We can modify just one system component, test it, and
then push it to production outside of any centrally mandated release cycle. This is a
much faster and more agile way to ship new software features”. In addition to the
polyglot persistence, “because of the isolation and independence of the Microservices,
individual services can be polyglot in terms of programming language [too], giving us
the ability to use ‘the right tool for the job’”. He goes on saying that “in a Microservice
world we can be much more flexible and scale individual services up and down as

necessary, giving the system a much more dynamic property that is well suited to an
elastic cloud environment”. Last but not the least, “both the Microservice architecture
and the way it is usually approached typically gives us a high degree of resilience as a
property of the system”.

Needless to say that the rise of microservices brings about a breadth of new problems
and challenges too, for instance network and operational complexity, data consistency
and distribution issues and monitoring and debugging difficulties. Obviously these also
drive the growth of new services and tools aiming to ease the pains of the developers
and operation people.

3.7. The APl world

When discussing the most important aspects of modern-day web development, the
term API surely needs to be mentioned. APIs are ubiquitous and power so many of the
websites and services that we use daily. And not only are they present on the web but
in fact, “APIs aren’t at all new; whenever you use a desktop or laptop, APIs are what
make it possible to move information between programs”. (Proffitt, 2013)

“API stands for application programming interface. (...) An API is a way for two
computer applications to talk to each other over a network (predominantly the
Internet) using a common language that they both understand. (...) There are APIs that
are open to any developer, APIs that are open only to partners, and APIs that are used
internally to help run the business better and facilitate collaboration between teams.
An API, then, is essentially a contract. Once such a contract is in place, developers are
enticed to use the APl because they know they can rely on it. The contract increases
confidence, which increases use. The contract also makes the connection between
provider and consumer much more efficient since the interfaces are documented,
consistent, and predictable.” (Jacobson - Brail - Woods, 2012)

It probably helps understand a bit more what | wrote about in the ‘Build your own or
use an existing solution?’ and ‘Microservices’ chapters. Developers can incorporate the
extra knowledge or features provided by external services by sending requests to and
receiving responses from their APls and microservices also communicate with each
other through APIs.

Today the web is an ever-growingly dense network of interconnected applications
that rely on one another for pieces of information that they themselves do not possess.

To name a few, some widely used examples include the APls of Google, Facebook,
Twitter and Dropbox or the wealth of integrations available in the major project
management, communication, customer relationship management, ERP, online
payment, billing and continuous deployment software products.

Regarding the means to access a web service, there are two main approaches: SOAP
(Simple Object Access Protocol) and REST (Representational State Transfer). As | see it,
REST has overtaken and left SOAP behind by miles and is used far more often
nowadays. Steve Francia in a 2010 article wrote that “the general rule of thumb I've
always heard is ‘Unless you have a definitive reason to use SOAP use REST’. (...) RESTs
sweet spot is when you are exposing a public APl over the internet to handle CRUD
operations on data. REST is focused on accessing named resources through a single
consistent interface. SOAP brings its own protocol and focuses on exposing pieces of
application logic (not data) as services. SOAP exposes operations. SOAP is focused on
accessing named operations, each implement some business logic through different
interfaces. (...) Since REST uses standard HTTP it is much simpler in just about every
way. Creating clients, developing APIs, the documentation is much easier to understand
and there aren’t very many things that REST doesn’t do easier/better than SOAP.”

He also notes that “REST permits many different data formats whereas SOAP only
permits XML. (...) JSON usually is a better fit for data and parses much faster. REST
allows better support for browser clients due to its support for JSON”. What is more,
“REST has better performance and scalability. REST reads can be cached, SOAP based
reads cannot be cached”.

One of the trends that | have personally seen in the PHP world is that
microframeworks optimized specifically for APIs (e.g. Lumen, Slim, Silex) get more and
more exposure due to the increasing demand for APIs.

The other one is that at some projects, beyond the MVC pattern’s separation of
concerns, there is a complete separation of the front-end and the back-end. How it
works is that the back-end system knows nothing about view rendering or anything of
that kind, it just simply provides a RESTful API. This way the front-end can be
completely independent, developed by a different team and even located elsewhere. In
a common case it would consist of a Javascript framework (e.g. Angular) that
communicates with the back-end API.

3.8. Software testing

Back in 2008, Paul Ammann and Jeff Offutt in the book called ‘Introduction to
Software Testing’ wrote that “not very long ago, software development companies
could afford to employ programmers who could not test and testers who could not
program. (...) Software testing in industry historically has been a nontechnical activity.
Industry viewed testing primarily from the managerial and process perspective and had
limited expectations of practitioners’ technical training. As the software engineering
profession matures, and as software becomes more pervasive in everyday life, there
are increasingly stringent requirements for software reliability, maintainability, and
security. Industry must respond to these changes by, among other things, improving
the way software is tested”.

This improved way of testing prefers automated, scripted testing over manual testing
(although manual testing is still present and necessary in many cases) and also moves
the responsibility of writing the testing code from a tester to the developer.

Software testing has gradually become more and more prominent in the web
development scene too. Fortunately in the past few years the idea and practice of
testing became mainstream and today we can say that the majority of professional web
developers, especially the ones working on big projects write tests every day, as an
integral part of their job. What is more, the test-driven development (TDD) approach,
which means that first you must write a test that fails before you write the actual code,
gets significant attention and popularity in web development too.

Profound software testing is crucial everywhere for quality assurance, but in my
opinion automated testing is particularly important in the field of web development,
because unlike other kinds of software products that ship their new versions in certain,
relatively rare intervals, the deployment of code changes should be continuous in a
web environment. | am going to write more about continuous deployment later on, but
it is important to note that without proper automated testing, it would mean an
incredibly high risk to roll out new versions not having some extent of confidence that
every part works as it should. If our test suites cover the whole application (in an ideal
world) and all the tests passed then we can be fairly sure that there no major drama is
about to happen.

Writing tests takes up a big chunk of a developer’s time and can seem tedious
sometimes, but actually it saves a lot of time, effort and stress when it comes to
altering complex parts or performing refactoring, not to mention the confidence and
peace of mind during releasing code changes and the decrease in the number of bugs.

There are several testing frameworks available for PHP which make testing easier and
more effective. The best-known solutions include PHPUnit, Codeception, Behat,
PHPSpec and Selenium. There are also some great cloud services which make
automated cross-browser website testing possible.

3.9. Continuous Integration and Deployment

Continuous Integration and Continuous Deployment are key terms in today’s web
development environment. The concepts do not mean the same thing but they are very
closely related to each other and usually go together.

3.9.1. Continuous Integration

The great minds at ThoughtWorks explained Continuous Integration (Cl) in an article
as “a development practice that requires developers to integrate code into a shared
repository several times a day. Each check-in is then verified by an automated build,
allowing teams to detect problems early”. Martin Fowler, Chief Scientist at
ThoughtWorks adds that “Continuous Integration doesn’t get rid of bugs, but it does
make them dramatically easier to find and remove”.

At first glance setting up and maintaining a process like that might seem like an
overhead, but in reality, it can save a lot of time, energy and headache. | have learnt it
the hard way through countless occasions of spending hours resolving conflicts that
emerged during merging long-lived Git branches back to the main branch. Now, at
J6Szaki, we push most of the commits right into the common develop branch and even
if we need to create a separate branch for some reason, we keep it up-to-date and
merge it back as soon as possible. Also whenever a new commit is pushed to the
repository, the build and the tests are executed automatically and we can see
straightaway if something goes wrong (we even get notifications to a Slack channel).

| love how the authors of the previously mentioned article put it into words:
“Continuous Integration is cheap. Not continuously integrating is costly. If you don’t
follow a continuous approach, you’ll have longer periods between integrations. This

makes it exponentially more difficult to find and fix problems. Such integration
problems can easily knock a project off-schedule, or cause it to fail altogether.”

Martin Fowler in his 2011 article uses a funny but self-explanatory chart to
demonstrate how the frequency of integrations reduces the difficulty of each
integration:

A

Fain

e

Time Between Actions

Figure 21. Frequency Reduces Difficulty. Source: Fowler (2011)

“If you have this kind of exponential relationship, then if you do it more frequently,
you can drastically reduce the pain. And this is what happens with Continuous
Integration - by integrating every day, the pain of integration almost vanishes. It did
hurt, so you did it more often, and now it no longer hurts”. (Fowler, 2011)

3.9.2. Continuous Deployment

Continuous Deployment (CD) is only about taking one more step in the same
direction: it basically means that every commit pushed into the shared repository that
passes the automated tests and produces a successful build gets automatically and
instantly release (deployed) into the production environment. Here is a bit more in-
depth explanation that reveals the background and significance of such an automated
process:

“Most modern applications of any size are complex to deploy, involving many moving
parts. Many organizations release software manually. By this we mean that the steps

— 37 —

required to deploy such an application are treated as separate and atomic, each
performed by an individual or team. Judgments must be made within these steps,
leaving them prone to human error. Even if this is not the case, differences in the
ordering and timing of these steps can lead to different outcomes. These differences
are rarely good. (...) Over time, deployments should tend towards being fully
automated. There should be two tasks for a human being to perform to deploy
software into a development, test, or production environment: to pick the version and
environment and to press the “deploy” button. (...) The automated deployment
process must be used by everybody, and it should be the only way in which the
software is ever deployed. This discipline ensures that the deployment script will work
when it is needed. One of the principles that we describe in this book is to use the
same script to deploy to every environment. If you use the same script to deploy to
every environment, then the deployment-to-production path will have been tested
hundreds or even thousands of times before it is needed on release day. If any
problems occur upon release, you can be certain they are problems with environment-
specific configuration, not your scripts.” (Humble - Farley, 2010)

One of the reasons why | really like this approach is that the quick fixes, minor
improvements and small features that used to wait in the queue for days or weeks can
now be deployed almost immediately and beyond its positive implications for quality,
in some way it even gives the developers a sense of progress and impact - they can see
the result and consequences of their work right away in production. On the one hand,
it eases the pressure to get everything perfect because you can make very short
iterations and these “not-yet-perfect” versions give you instant feedback and reveal the
accidental mistakes. On the other hand, developers are urged to ensure consistent
quality and releasable code at all times, because poorly written code fragments are
likely going to bring about issues straightaway.

These are quite a few popular continuous integration tools available that make it very
easy to setup a highly automated process. Most of these tools can observe certain
events in our cloud Git repository and respond with custom actions like running the
test cases or starting the deployment process, access our cloud server instances and
perform changes necessary for deployment and even communicate with a number of
external services (e.g.: send the new version number to Sentry, update tickets in the
project management systems, send notifications to a Slack channel, etc...). Some of the

most popular continuous deployment software are Jenkins, Travis Cl, Codeship, CircleCl
and GitLab CI.

We can see that this topic brought together many previously discussed things, for
instance the cloud technologies, server infrastructure, version control, APIs and
software testing. These can all come together very nicely and can thus result in a
modern and highly efficient environment. The key question is how you can integrate
these tools and services in order to get a powerful combination of them. It is all about
synergy, when the sum of the power of the parts is less significant than the actual
power they produce when they all come together. This positive synergy is also called
the 2 + 2 = 5 effect (Reference for Business, Encyclopedia of Management). This means
that it is not sufficient to choose good tools and services, but we also need to
understand what they are designed for and how they will cooperate with all the other
things that are in use in our project. The ultimate goal is to achieve an environment
that enables web developers and web developer teams to maximize their potential.

3.10. DevOps culture

Now, at the end of the ‘The technology trends’ chapter, | would like to mention a
phenomenon that is less of a technical and more of a cultural and organizational matter
by nature.

The evolution of the so-called DevOps culture has a significant effect on a web
developer’s life and daily tasks. Traditionally development used to be somewhat
separated from operations, maintenance and deployment activities, but this situation is
being transformed into a new set-up where either there is a strong and active
collaboration between development and operations or developers even take over a
part of or all of these tasks.

“An attitude of shared responsibility is an aspect of DevOps culture that encourages
closer collaboration. It’s easy for a development team to become disinterested in the
operation and maintenance of a system if it is handed over to another team to look
after. If a development team shares the responsibility of looking after a system over
the course of its lifetime, they are able to share the operations staff’'s pain and so
identify ways to simplify deployment and maintenance (e.g. by automating
deployments and improving logging). They may also gain additional observed

requirements from monitoring the system in production. (...) DevOps culture blurs the
line between the roles of developer and operations staff and may eventually eliminate
the distinction.” (Wilsenach, 2015)

4.The business perspective

So far I've been writing mostly about what technology is available, what it looks like
and what it is capable of doing. Although these solutions can be really exciting from a
developer’s point of view, we must also see that even if an ideal, perfect software and
server environment existed, in and of itself it wouldn’t be worth much without
delivering value to the business. This is why | find it important to take a close look at
what the main factors are from a business perspective and what the business can gain
and benefit from the technology shifts.

4.1. Scalability

Scaling has been mentioned many times in this paper already, and it is a very
important topic indeed. In this context scaling up basically means keeping the behavior
of a website or web service unchanged despite the increasing load (which usually
means the number of users). It comes into play either when the traffic is growing over
time or when unusually high traffic hits the web server, for example thanks to a
marketing campaign or some other event that causes a swift increase in interest. In
most cases, increasing the computing capacity of the server (e.g. CPU, memory) solves
the problem. Scaling down, on the other hand, means lowering the performance of the
system when less computing power is enough.

There are two distinctively different types of scaling: vertical scaling (also called
scaling up) and horizontal scaling (also called scaling out). A 2014 David Beaumont
article explains it this way: “Vertical scaling can essentially resize your server with no
change to your code. It is the ability to increase the capacity of existing hardware or
software by adding resources. Vertical scaling is limited by the fact that you can only
get as big as the size of the server. Horizontal scaling affords the ability to scale wider
to deal with traffic. It is the ability to connect multiple hardware or software entities,
such as servers, so that they work as a single logical unit. This kind of scale cannot be
implemented at a moment’s notice.”

| drew a chart to illustrate the difference:

Vertical Horizontal
i i
| s— |
| s— | — — — —
= = 5 g E
—_1 o ° o)
(o]

Figure 22. Vertical and Horizontal Scaling. (My own work, 2016)

According to Amir Shevat (2008), for “small scale application scaling up [vertical
scaling] might be cheaper and faster to develop and implement” but “it is a costly and
not an infinite solution, (...) there is a physical limitation to the computing power and
memory you can have in a single computer”. For large applications horizontal scaling is
better, because it “offers infinite scalability, when you need to support more users you
just add more low cost computers to your server farms. On the other hand, this is not a
straightforward solution. You need to design, architect, and develop your application to
be ready to scale out”.

The great news here from a business perspective is that on a cloud server
infrastructure (that | described in Section 3.5) horizontal scaling can be achieved easily
(even automatically) and most importantly, cost efficiently, instead of spending a large
sum on scaling up the application vertically. If the application is built on a microservice
infrastructure, it is enough to launch new nodes of the services which are performance
bottlenecks, as opposed to scaling up the entirety of a monolithic application. The
performance, resources and costs can be tailored to the actual demand and needs. For
example, during marketing campaigns or in times of the year when we expect higher
traffic we can scale up the application while in less busy periods we can scale it down.

It makes it easy to introduce new services or features or to expand the service to new
areas or even to new countries or continents. In case of a geographic expansion a great
solution could be to spin up new instances in another availability zone which is closer
to the newly targeted areas to provide their users with low latency.

4.2. Costs

For businesses, operational costs are always of very high importance, so | find it
worthwhile to take a look at how the costs are affected and changed by the direction in
which web development is moving.

Very much the same way as in other industries, we can say that automation in
general frees up human resources and thus saves money. It is worth the effort to
provide the developers with an environment where they can effectively and efficiently
collaborate with each other and can create outstanding value. This can be achieved by
enabling the developers to focus on the things that they truly care about and that they
are best at — instead of spending their expensive and valuable time on tedious,
repetitive tasks that could be automated or outsourced.

The wave of cloud servers and other cloud services has managed to diminish the
maintenance costs by making in-house servers, devices, tools, network and data
storage unnecessary. By that | do not only mean the actual cost of the hardware but
also the cost of the needed software and the cost of the workforce who is responsible
for configuring and maintaining the infrastructure.

“Cloud-based services can help you save money on many fronts, including server
maintenance, power and cooling costs, and software licensing and upgrade expenses.
(...) Rather than spending money to maintain hardware that often goes unused,
subscribing to software and services for a low monthly fee can help small businesses
stretch their budgets further.” (American Express Company, 2011)

On top of the changes in cost efficiency, the cost structure has also changed. Some of
the typical fixed costs have turned into variable cost due to the rise of ‘pay as you go’
cloud services. To clarify: “fixed costs [are] not tied to production [while] variable costs
fluctuate according to how much you produce”. (Thompson, 2015) What it means for
web development projects is that a significant portion of the total costs depend on the
traffic and performance of the application. If your website or web services generates
money for you also on a per user or per performance basis, then in very simple terms

we can say that you pay less when you have less income and you pay more when you
have higher income. Its advantage is that the barrier to entry goes down in the industry
and new players can start building their projects with relatively low costs and they only
need to pay more when their projects turn out to be successful.

Cloud computing and the use of third-party tools and services is ideal for companies
big and small because they save cost and give extra convenience and allow you to focus
on what you do best. Where | personally see a distinction though is the use of proper
automated testing, code quality assurance, reporting and monitoring tools and
automated deployment solutions. | feel that in the field of web development teams
developing their own products used to be more likely to incorporate these practices
because for them the long-term effects are more important and therefore they were
willing to invest time, money and learning into these to reach better quality and
efficiency. On the contrary, teams working on client projects tended to have the “get it
done as quickly as possible” attitude due to the deadlines and the lack of emotional
attachment to the projects. In my opinion thanks to the rapid growth and advancement
in the field, these practices are no longer considered to be a luxury and more and more
companies in diverse fields can afford to have them and realize that the investment
breeds actual competitive advantage. What | am trying to say is that the necessary
investment both in terms of money and knowledge has dropped and now practically
anyone has access to these services either for free or at a low price and it has become
so easy to start using them that even novice developers can utilize them.

4.3. Quality

Even though price, speed of delivery and other factors often get higher priority than
quality, | still insist that quality is very valuable to the right customers and high quality
is a great value that the business can sell. This is why it is important for the business
that the web developers create a quality product that in return creates value for the
customer and thus to the business.

| have already written about how automated tests reduce the number of times when
something unexpected happens and makes it easier to spot faulty parts, how using
third-party software that is widely used, tried and tested can decrease the number of
bugs and leaks and how we can achieve more consistency by automating complex
processes are extremely prone to human error. These all help the business to have a
strong value proposition based on quality that appeals to the customer.

Sommerville collected a number of software quality attributes in the ninth edition of
the Software Engineering book (2011), and these apply to web development and web
products too:

Safety Understandability Portability
Security Testability Usability
Reliability Adaptability Reusability
Resilience Modularity Efficiency
Robustness Complexity Learnability

Figure 23. Software quality attributes. (Sommerville, 2011)

We can see that many of these attributes, like robustness, reliability, testability,
resilience, security, modularity, portability, reusability and efficiency are addressed and
improved by the technology shifts discussed earlier in this paper.

4.4. Internal processes

4.4.1. Metrics

The new set of tools and services that | demonstrated in the technology trends
chapter make it possible to monitor, measure, track and analyze systems and processes
a lot more accurately. This is an important factor because in order to understand the
actual performance of a system, team or company, you need good and reliable metrics.
In recent years many companies have started consciously sticking to data-driven
decisions, and obviously they apply this approach to the web development teams and
projects too.

A commonly practiced way of setting goals and measuring results is defining KPIs (Key
Performance Indicators). With these advanced tools and services a lot of data is
available automatically and thus gathering data for the metrics is not a big burden any
longer. To name a few examples, deployment speed, deployment success rate,
deployment frequency, rollback / regression frequency, test coverage, number of tests,
test execution time, code duplication rate, availability, average response time, number

of reported bugs, number of runtime exceptions and development velocity (based on
story points) can all be used as KPI of the web development team and the figures can
easily be retrieved from the various continuous integration, monitoring and analytics
tools.

We use several of these metrics at J6Szaki and they provide us with a really good base
for comparison both to our previous results and to other teams, and they serve as
indicators on our development speed and quality. Knowing our velocity, for instance,
helps us with resource planning and also helps us draw conclusions about the efficiency
of our methods and processes. What is more, we define team goals based on these
metrics and seeing how we are improving adds an extra incentive and motivation to
our daily work.

One last aspect | would like to mention in this topic is that web service providers can
commit themselves to more realistic availability and performance criteria when they
have reliable metrics about every part of their systems. Not only does it help when
defining an SLA (Service Level Agreement) but it also helps to spot the bottlenecks and
weakest links that need immediate attention.

4.4.2. Flexibility and velocity

Automation, cloud technologies and third-party solutions have all contributed to an
increase in speed of development (velocity), and the flexibility is also improved by
things like continuous integration and deployment. This increased agility is important
for the business because it can mean shorter release cycles, flexible release options,
the ability to satisfy urgent business needs almost instantly and the ability to fix
business critical bugs and issues quickly.

In today’s constantly changing and volatile environment it is essential to have the
ability to run quick and short experiments and iterate easily on new features and
improvements. The business and product development teams can come up with new
ideas and can rapidly go through the “build - measure - learn” methodology introduced
by the book called The Lean Startup (Ries, 2011). They can get their experiments to
production in a minimum amount of time and can change their minds based on the
results and can rollback or modify things.

On top of these advantages, the short cycles and frequent deployments also reduce
the risks of a change. What is more, these often expose hidden inefficiencies and costs
which can then be addressed and fixed.

4.4.3. People as Single Points of Failure

In the IT world the ‘single point of failure’ term is often used to refer to an “element
or part of a system for which no backup (redundancy) exists and the failure of which
will disable the entire system.” (Business Dictionary, 2016) Obviously a single point of
failure is a thing to be avoided because it threatens the security and stability of the
whole systems.

Where is becomes interesting is that it does not only apply to computer systems but
to organizations too. A person can easily be a single point of failure if their absence or
departure would paralyze the organization or the actual computer system.

In 2013 Tomas Kucera wrote that “your responsibility as a leader is to identify key
people and plan for their unexpected demise. The goal is not to have key people at all.”

As | see it, many web development projects have transitioned from a state of using
completely custom and unique, complex and unclean code bases to a state of using
well-known frameworks even for bespoke software, relying on properly documented
and widely used libraries and cloud services, adapting common principles and coding
conventions, having extensive test suites and automated deployment processes. These
somewhat standardized, documented and industry standard processes and tools result
in an environment where workforce is a little bit easier to replace and dependency on a
particular developer is reduced.

It is important to note that | do not think developers should be perceived and treated
as cogs in a machine that can easily be replaced anytime, because they carry an
incredible wealth of experience, knowledge and relationships specific to the
organization. | like how Amy Rees Anderson in a 2013 article wrote that “great
employees are not replaceable (...) it is great people that make a great company”. |
totally agree with it but | also know that what she writes later on is also true: “there
will be some life events that take great employees away from a company, which cannot
be stopped”. This thought and all the cases when a developer is absent for a shorter or
longer time amplify the need for an environment where people are less likely to be
single points of failure.

4.4.4. Employer branding

| think this is a really important aspect but the meaning of the term might not be clear
at first sight. This is how a recruitment guide on Realstaffing.com defines it: “An
employer brand refers to the perceptions key stakeholders, and more specifically
current and potential employees, have of your organisation. It is about how they view
the company; from how you conduct yourselves in the market, through to what they
think it would be like to work for your organisation. An effective employer brand
presents your organisation as a good employer and a great place to work and can, as a
result, help with recruitment, retention and generally affect market perception of your
company.” (Realstaffing.com, 2016)

| believe that having a great environment can make the company more appealing and
attractive to developers. What | mean by great environment in this case is that the
developers can use advanced, cutting-edge technologies and tools, they are
encouraged and supported to follow the trends and keep learning and experimenting,
and their mundane tasks are automated so that they can spend their time with exciting
challenges.

As a consequence, it will be easier to attract and hire talent and retain existing
employees. It is of particularly high importance nowadays as companies are faced with
scarcity of quality workforce in the field of web development. As far as | know this is
happening all over the world in the whole IT industry, but what | am sure about is that
this is the case in Hungary.

According to an index.hu article published in March 2016 the Hungarian companies
could employ 22.000 more people in IT positions while in the European Union there is a
need for an additional 600.000 - 700.000 software developers. | haven’t found any data
about the web developers in particular, but based on my own experiences, the
situation is just about the same and companies find it difficult to hire good developers.

This is the end of ‘The business perspective’ chapter. We can see that not only does
the technology change rapidly but businesses are also strongly affected by the wind of
change. New opportunities and advantages emerge while businesses need to face new
challenges and difficulties as well, such as privacy, security, responsibility and
dependency concerns.

5.Summary

The few selected areas that | covered in this paper gave an overview the current state
of web development and also gave a glimpse into what is in the toolbox of a modern
day web developer. The rapid improvement and transformation of the technologies,
best practices and tools make web development both a challenging and an exciting
occupation.

As | see it, the main threads of the advancement are automation, cloud computing,
distributed and scalable systems, and last but not least open-source software and
extensive collaboration that joins forces, connects knowledge and experience and
creates ambitious, far-reaching and valuable products and services.

We could also see that the technology shifts that we are experiencing have affected
businesses too in numerous ways. Those who can adapt to this ever-changing
environment and can take advantage of the opportunities have a great chance of
success as there is still a wealth of unleashed potential on the web. This is where this
paper can help — by becoming familiar with the trends and becoming well-versed with
the available technology, both individuals and businesses can gain a deeper
understanding of the web development environment and will be able to spot and
exploit opportunities.

Since | did not go into the specific software engineering details, the technology
overview is suitable even for non-developer participants of web development projects.
Knowing how today’s technology works and how the different areas relate to each
other can help them identify with the challenges and struggles of developers and can
also help them originate innovative ideas.

| am fairly sure that the presented evolution of the web is going to continue. We are
just about to go deeper into the era of the Semantic Web (Web 3.0) which connects
knowledge and then over time we are going to get closer to the Web 4.0 era, the era of
The Ubiquitous Web (4.0) which is forecasted to connect intelligence to an extent that
is yet unknown.

| also expect that Artificial Intelligence (Al) solutions are going to become even more
common and useful and will be present in almost every segment of the web
development landscape. Two examples of its manifestation are communication and

integration bots (which are already apparent in many web application, like Slack and
Facebook Messenger) and intelligent software robots that are likely to replace human
workforce in trivial, repetitive web development tasks.

6. List of figures

Figure 1. ‘Semantics of Social Connections’ and ‘Semantics of Information Connections’.
Source: Spivack (2016)

Figure 2. What is the Evolution of the Internet to 20207 Source: Davis (2008)

Figure 3. Total Number of Websites. Source: NetCraft and Internet Live Stats (2016)
Figure 4. The most popular programming languages. Source: Stack Overflow (2016)
Figure 5. Programming Language vs High Traffic Websites. Source: Millares (2015)
Figure 6. DB-Engines Ranking. Source: SolidIT (2016)

Figure 7. DB-Engines Ranking. Source: SolidIT (2016)

Figure 8. Step 1: Use of RDBMS for every aspect of storage for the application. Source:
Sadalage - Fowler (2012)

Figure 9. Step 2: Example implementation of polyglot persistence. Source: Sadalage -
Fowler (2012)

Figure 10. Step 3: Using services instead of talking to databases. Source: Sadalage -
Fowler (2012)

Figure 11. MVC pattern (Model - View - Controller). Source: Moock.org (2016)

Figure 12. PHP Framework Popularity at Work. Source: Skvorc (2015)

Figure 13. Web search interest over time for PHP frameworks. (My own work, 2016)
Figure 14. Most popular content management systems. Source: W3Techs.com (2016)
Figure 15. Market share of CMS systems. Source: OpenSource CMS (2016)

Figure 16. Usage of operating systems for websites. Source: W3Techs (2016)

Figure 17. Web server developers: Market share of all sites. Source: NetCraft (2016)

Figure 18. Web server developers: Market share of all sites. Source: NetCraft (2016)

Figure 19. Web server developers: Market share of the top million busiest sites. Source:
NetCraft (2016)

Figure 20. Web server developers: Market share of the top million busiest sites. Source:
NetCraft (2016)

Figure 21. Frequency Reduces Difficulty. Source: Fowler (2011)
Figure 22. Vertical and Horizontal Scaling. (My own work, 2016)

Figure 23. Software quality attributes. (Sommerville, 2011)

7.References

American Express Company (2011): OPEN Insight Guide - Running Your Business in the
Cloud

https://c401345.ssl.cfl.rackcdn.com/pdf/OPEN Savings Cloud Insight Guide.pdf
Downloaded on 22 April 2016

Ammann, P. - Offutt, J. (2008): Introduction to Software Testing, Cambridge University
Press

Anderson, A. R. (2013): Great Employees Are Not Replaceable
http://www.forbes.com/sites/amyanderson/2013/02/13/great-employees-are-not-
replaceable/#16db46407230

Downloaded on 7 April 2016

Beaumont, D. (2014): Thoughts On Cloud
http://www.thoughtsoncloud.com/2014/04/explain-vertical-horizontal-scaling-cloud/
Downloaded on 20 April 2016

Business Dictionary: single point of failure
http://www.businessdictionary.com/definition/single-point-of-failure.html
Downloaded on 7 April 2016

Chacon, S. - Straub, B. (2014): Pro Git, Second Edition, Apress Media LLC

David, M. (2008): Summary of Project10X’s Semantic Wave 2008 Report: Industry
Roadmap to Web 3.0 & Multibillion Dollar Market Opportunities
http://www.itu.dk/people/cmmm/Mills%20Davis%20Web%203.0.pdf
Downloaded on 17 April 2016

Griffith, E. (2015): What Is Cloud Computing?
http://www.pcmag.com/article2/0,2817,2372163,00.asp
Downloaded on 19 April 2016

Fowler, M. (2011): FrequencyReducesDifficulty
http://www.martinfowler.com/bliki/FrequencyReducesDifficulty.html
Downloaded on 3 April 2016

https://c401345.ssl.cf1.rackcdn.com/pdf/OPEN_Savings_Cloud_Insight_Guide.pdf
http://www.forbes.com/sites/amyanderson/2013/02/13/great-employees-are-not-replaceable/#16db46407230
http://www.forbes.com/sites/amyanderson/2013/02/13/great-employees-are-not-replaceable/#16db46407230
http://www.thoughtsoncloud.com/2014/04/explain-vertical-horizontal-scaling-cloud/
http://www.businessdictionary.com/definition/single-point-of-failure.html
http://www.itu.dk/people/cmmm/Mills%20Davis%20Web%203.0.pdf
http://www.pcmag.com/article2/0,2817,2372163,00.asp
http://www.martinfowler.com/bliki/FrequencyReducesDifficulty.html

Francia, S. (2010): REST Vs SOAP, The Difference Between Soap And Rest
http://spfl13.com/post/soap-vs-rest
Downloaded on 28 April 2016

Humble, J. - Farley, D. (2010): Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation, Addison-Wesley Professional

Jacobson, D. - Brail, G. - Woods, D. (2012): APIs: A Strategy Guide, O’Reilly Media

Kepes, B. (2015): New Stats From The State Of Cloud Report
http://www.forbes.com/sites/benkepes/2015/03/04/new-stats-from-the-state-of-
cloud-report/#4797721126f9

Downloaded on 19 April 2016

Kucera, T. (2013): How to avoid “single point of failure” situations in your team?
https://thegeekyleader.com/2013/07/28/how-to-avoid-single-point-of-failure-
situations-in-your-team/

Downloaded on 7 April 2016

Megyesi, M. (2012): Why Frameworks? https://blog.8thlight.com/myles-
megyesi/2012/09/12/why-frameworks.html
Downloaded on 21 April 2016

Millares, G. (2015): Top 5 Programming Languages Used In Web Development
http://blog.stoneriverelearning.com/top-5-programming-languages-used-in-web-

development/
Downloaded on 14 April 2016

Moock.org: Model/view/controller design pattern ("MVC")
http://www.moock.org/lectures/mvc/
Downloaded on 19 April 2016

Morrow, K. (2014): Web 2.0, Web 3.0, and the Internet of Things
http://www.uxbooth.com/articles/web-2-0-web-3-0-and-the-internet-of-things/
Downloaded on 15 April 2016

Netcraft (2016): March 2016 Web Server Survey
http://news.netcraft.com/archives/2016/03/18/march-2016-web-server-survey.html
Downloaded on 30 April 2016

http://spf13.com/post/soap-vs-rest
http://www.forbes.com/sites/benkepes/2015/03/04/new-stats-from-the-state-of-cloud-report/#4797721126f9
http://www.forbes.com/sites/benkepes/2015/03/04/new-stats-from-the-state-of-cloud-report/#4797721126f9
https://thegeekyleader.com/2013/07/28/how-to-avoid-single-point-of-failure-situations-in-your-team/
https://thegeekyleader.com/2013/07/28/how-to-avoid-single-point-of-failure-situations-in-your-team/
https://blog.8thlight.com/myles-megyesi/2012/09/12/why-frameworks.html
https://blog.8thlight.com/myles-megyesi/2012/09/12/why-frameworks.html
http://blog.stoneriverelearning.com/top-5-programming-languages-used-in-web-development/
http://blog.stoneriverelearning.com/top-5-programming-languages-used-in-web-development/
http://www.moock.org/lectures/mvc/
http://www.uxbooth.com/articles/web-2-0-web-3-0-and-the-internet-of-things/
http://news.netcraft.com/archives/2016/03/18/march-2016-web-server-survey.html

Netcraft - Internet Live Stats (2016): Total number of Websites
http://www.internetlivestats.com/total-number-of-websites/
Downloaded on 15 April 2016

Newman, S. (2015): Building Microservices, O’Reilly Media

OpenSource CMS (2016): CMS Market Share
http://www.opensourcecms.com/general/cms-marketshare.php
Downloaded on 25 April 2016

Proffitt, B. (2013): What APIs Are And Why They’re Important
http://readwrite.com/2013/09/19/api-defined/
Downloaded on 28 April 2016

Rakowski, K. (2011): Getting Started With PHP Templating
https://www.smashingmagazine.com/2011/10/getting-started-with-php-templating/
Downloaded on 21 April 2016

Realstaffing.com: Building a compelling employer brand
http://www.realstaffing.com/employers/recruitment-guides/building-a-compelling-

employer-brand
Downloaded on 8 April 2016

Reference for Business: Synergy
http://www.referenceforbusiness.com/management/Str-Ti/Synergy.html
Downloaded on 2 April 2016

Ries, E. (2011): The Lean Startup, Crown Business

Sadalage, P. (2014): NoSQL Databases: An Overview
https://www.thoughtworks.com/insights/blog/nosql-databases-overview
Downloaded on 17 April 2016

Sadalage, P. - Fowler, M. (2012): NoSQL Distilled - A Brief Guide to the Emerging World
of Polyglot Persistence, Addison-Wesley Professional

Serra, J. (2015): What is Polyglot Persistence?
http://www.jamesserra.com/archive/2015/07/what-is-polyglot-persistence/
Downloaded on 17 April 2016

http://www.internetlivestats.com/total-number-of-websites/
http://www.opensourcecms.com/general/cms-marketshare.php
http://readwrite.com/2013/09/19/api-defined/
https://www.smashingmagazine.com/2011/10/getting-started-with-php-templating/
http://www.realstaffing.com/employers/recruitment-guides/building-a-compelling-employer-brand
http://www.realstaffing.com/employers/recruitment-guides/building-a-compelling-employer-brand
http://www.referenceforbusiness.com/management/Str-Ti/Synergy.html
https://www.thoughtworks.com/insights/blog/nosql-databases-overview
http://www.jamesserra.com/archive/2015/07/what-is-polyglot-persistence/

Shevat, A. (2008): Scale out versus scale up — How to scale your application
http://spacebug.com/scale-out-versus-scale-up-html/
Downloaded on 1 May 2016

Skvorc, B. (2015): The Best PHP Framework for 2015: SitePoint Survey Results
http://www.sitepoint.com/best-php-framework-2015-sitepoint-survey-results/
Downloaded on 21 April 2016

SolidIT (2016): DB-Engines Ranking
http://db-engines.com/en/ranking and http://db-engines.com/en/ranking trend
Downloaded on 17 April 2016

Sommerville, I. (2011): Software Engineering, Ninth Edition, Pearson Education, Inc.
Sosinsky, B. (2011): Cloud Computing Bible, Wiley Publishing, Inc., Indianapolis

Spivack, N.: Web 3.0: The Third Generation Web is Coming
https://lifeboat.com/ex/web.3.0
Downloaded on 15 April 2016

Stack Overflow (2016): Developer Survey Results
http://stackoverflow.com/research/developer-survey-2016
Downloaded on 14 April 2016

Stubnya, B. (2016): Nem tilintetnek érte, de a jov6 mulik rajta
http://index.hu/gazdasag/2016/03/04/informatikushiany munkaeropiac oktatas infor

matika/
Downloaded on 1 May 2016

Thompson, M. (2015): Fixed and Variable Expenses: What Do They Mean for
Production?
http://www.business.com/finance/fixed-and-variable-expenses-what-do-they-mean/
Downloaded on 7 April 2016

ThoughtWorks: Continuous Integration
https://www.thoughtworks.com/continuous-integration
Downloaded on 29 April 2016

Turnbull, J. (2014): The Docker Book
http://books.linuxfocus.net/files/books/James.Turnbull.The.Docker.Book.Containerizati

http://spacebug.com/scale-out-versus-scale-up-html/
http://www.sitepoint.com/best-php-framework-2015-sitepoint-survey-results/
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking_trend
https://lifeboat.com/ex/web.3.0
http://stackoverflow.com/research/developer-survey-2016
http://index.hu/gazdasag/2016/03/04/informatikushiany_munkaeropiac_oktatas_informatika/
http://index.hu/gazdasag/2016/03/04/informatikushiany_munkaeropiac_oktatas_informatika/
http://www.business.com/finance/fixed-and-variable-expenses-what-do-they-mean/
https://www.thoughtworks.com/continuous-integration
http://books.linuxfocus.net/files/books/James.Turnbull.The.Docker.Book.Containerization.is.the.new.virtualization.B00LRROTI4.pdf

on.is.the.new.virtualization.BOOLRROTI4.pdf
Downloaded on 29 April 2016

Vergara, D. (2012): Version Control Systems: Distributed vs. Centralized
http://oshyn.com/software-

development/version control systems distributed vs centralized
Downloaded on 24 April 2016

Wallop, H. (2014): Gen Z, Gen Y, baby boomers — a guide to the generations
http://www.telegraph.co.uk/news/features/11002767/Gen-Z-Gen-Y-baby-boomers-a-
guide-to-the-generations.html

Downloaded on 15 April 2016

Wilsenach, R. (2015): DevOpsCulture
http://martinfowler.com/bliki/DevOpsCulture.html
Downloaded on 30 April 2016

Wootton, B. (2016): The Benefits Of Microservices
http://sendachi.com/2016/microservices/the-benefits-of-microservices
Downloaded on 30 April 2016

W3Techs (2016): Most popular content management systems
http://w3techs.com/
Downloaded on 29 April 2016

W3Techs (2016): Usage of operating systems for websites
http://w3techs.com/technologies/overview/operating system/all
Downloaded on 30 April 2016

http://books.linuxfocus.net/files/books/James.Turnbull.The.Docker.Book.Containerization.is.the.new.virtualization.B00LRROTI4.pdf
http://oshyn.com/software-development/version_control_systems_distributed_vs_centralized
http://oshyn.com/software-development/version_control_systems_distributed_vs_centralized
http://www.telegraph.co.uk/news/features/11002767/Gen-Z-Gen-Y-baby-boomers-a-guide-to-the-generations.html
http://www.telegraph.co.uk/news/features/11002767/Gen-Z-Gen-Y-baby-boomers-a-guide-to-the-generations.html
http://martinfowler.com/bliki/DevOpsCulture.html
http://sendachi.com/2016/microservices/the-benefits-of-microservices
http://w3techs.com/
http://w3techs.com/technologies/overview/operating_system/all

