

Corvinus University of Budapest

Faculty of Business Administration

Department of Computer Science

The technology trends in web development and their

effects on businesses

Author: Dávid Naményi

BSc in Business Informatics

2016

Advisor: Blanka Láng, PhD

I. számú melléklet

NYILATKOZAT SAJÁT MUNKÁRÓL

Név: Naményi Dávid

E-mail cím: dnamenyi@gmail.com

NEPTUN kód: kd00kg

A szakdolgozat címe magyarul:

A webfejlesztés technológiai trendjei és azok üzleti hatásai

A szakdolgozat címe angolul:

The technology trends in web development and their effects on businesses

Szakszeminárium-vezető (vagy konzulens) neve: Dr. Láng Blanka

Én, Naményi Dávid teljes felelősségem tudatában kijelentem, hogy a jelen

szakdolgozatban szereplő minden szövegrész, ábra és táblázat – az előírt

szabályoknak megfelelően hivatkozott részek kivételével – eredeti és kizárólag a saját

munkám eredménye, más dokumentumra vagy közreműködőre nem támaszkodik.

Budapest, 2016. május 2.

 hallgató aláírása

TÉMAVEZETŐI NYILATKOZAT

Alulírott Dr. Láng Blanka konzulens kijelentem, hogy a fent megjelölt hallgató fentiek

szerinti szakdolgozata benyújtásra alkalmas és védésre ajánlom.

Budapest, 2016. május 2.

 …………………………………….

 konzulens aláírása

II. számú melléklet

NYILATKOZAT

A SZAKDOLGOZAT NYILVÁNOSSÁGÁRÓL

Név: Naményi Dávid

Alapszak, szak neve: Gazdaságinformatikus, BSc

Dolgozatom elektronikus változatának (pdf dokumentum, a megtekintés, a mentés és a

nyomtatás engedélyezett, szerkesztés nem) nyilvánosságáról az alábbi lehetőségek

közül kiválasztott hozzáférési szabályzat szerint rendelkezem.

TELJES NYILVÁNOSSÁGGAL

A könyvtári honlapon keresztül elérhető a Szakdolgozatok/TDK adatbázisban

(http://szd.lib.uni-corvinus.hu/), a világháló bármely pontjáról hozzáférhető, fentebb

jellemzett pdf dokumentum formájában.

KORLÁTOZOTT NYILVÁNOSSÁGGAL

A könyvtári honlapon keresztül elérhető a Szakdolgozatok/TDK adatbázisban

(http://szd.lib.uni-corvinus.hu/), a kizárólag a Budapesti Corvinus Egyetem területéről

hozzáférhető, fentebb jellemzett pdf dokumentum formájában.

NEM NYILVÁNOS

A dolgozat a BCE Központi Könyvtárának nyilvántartásában semmilyen formában

(bibliográfiai leírás vagy teljes szöveges változat) nem szerepel.

Budapest, 2016. május 2.

………………………………………………

a hallgató (szerző) aláírása

─ 1 ─

Table of contents

1. Preface ... 3

2. The evolution of the web ... 4

3. The technology trends ... 10

3.1. Cloud computing ... 10

3.2. Programming languages and technologies ... 11

3.2.1. Front-end ... 11

3.2.2. Back-end .. 12

3.2.3. Databases ... 15

3.3. Build your own or use an existing solution? ... 20

3.3.1. Frameworks ... 22

3.3.2. Content management systems .. 25

3.4. Version control .. 27

3.5. Server environment ... 28

3.5.1. Containers .. 29

3.5.2. Operating systems and web servers .. 29

3.6. Microservices ... 32

3.7. The API world .. 33

3.8. Software testing .. 35

3.9. Continuous Integration and Deployment ... 36

3.9.1. Continuous Integration .. 36

3.9.2. Continuous Deployment .. 37

─ 2 ─

3.10. DevOps culture ... 39

4. The business perspective ... 41

4.1. Scalability ... 41

4.2. Costs .. 43

4.3. Quality ... 44

4.4. Internal processes ... 45

4.4.1. Metrics ... 45

4.4.2. Flexibility and velocity ... 46

4.4.3. People as Single Points of Failure .. 47

4.4.4. Employer branding... 48

5. Summary .. 49

6. List of figures .. 51

7. References .. 53

─ 3 ─

1. Preface

In this paper my goal is to demonstrate the evolution and the current situation and

challenges of web development, showcase a modern day web developer’s set of tools

and scrutinize the technology shifts’ effects on businesses.

Thanks to the rapid growth in its economic significance, the web has grown into a

massive industry with plenty of areas and different aspects that you need to take into

consideration when talking about web projects. For instance there is product

development, project management, information architecture, user experience design,

user interface design, system operation and software development too, not to mention

the human factors and the general business areas that also apply (e.g. finance,

accounting, marketing, sales, branding, HR, etc.).

This paper is far from being exhaustive and focuses mainly on the technical side, i.e.

development and operations. These are still very broad terms and cover numerous

different areas, each of which would deserve a book on its own due to the complexity

and depth of the questions and challenges. This is why I decided to give only a bird's

eye view of a few subjectively selected areas within the field of web development.

I aim to demonstrate briefly what the most important technologies, tools and

practices are nowadays and how the recent advancements are changing the landscape

from the business perspective. Hopefully I will also be able to shed some light on the

direction in which the industry is moving.

Some of the things I write about can be discussed in general and apply to all fields of

software development, but web development is somewhat different and unique in a

number of aspects. I myself have only gained experience in the field of web

development, so everything I write about refers to the web development environment.

Although I discuss the trends and technologies mostly in general, I write about some

personal experiences and opinions too which I have gained through the web

development projects I have been involved in at JóSzaki (the biggest Hungarian

handyman finder service), at Divide By Zero Australia (a technology and branding

agency in Sydney) and at the Digital Team of The CyberInstitute (Brisbane, Australia).

─ 4 ─

2. The evolution of the web

I am not going to go into the specific details of the web’s history, but I am going to

mention a few important concepts and will show how closely tied its advancement is to

the advancement of the internet itself.

So first, let’s clarify what the difference is between the internet and the web. We

often use these terms interchangeably, but actually they mean different things. To

make it simple, the internet is the actual computer network that connects billions of

digital devices together globally, allowing them to transfer information with each other

via certain protocols. The web is just one of the many ways of accessing information on

the internet. It uses the HTTP protocol to allow communication and transmission of

data between applications. Using browsers is the most common way of accessing web

documents (web pages) over the internet. In this paper I’m focusing on the software

development environment in which the web pages (websites) are built and operated.

When discussing the web’s evolution, however, I need to talk about the web and the

internet at the same time because they cannot be easily separated from each other in

this context.

It is very interesting to know and see that the internet started as a limited network of

interconnected computers used primarily for military and scientific purposes and then

evolved into something way larger, the open World Wide Web, and through countless

changes and shifts finally became an essential part of our everyday lives. I must also

note that the word ‘finally’ might be misleading in this context, because the rapid

advancement of internet technology is far from reaching its peak. It appears to be

conquering new territories and revealing new ways to utilize the technology.

Kim Morrow in her 2014 UX Booth article writes that “the internet has become an

integrated, seamless, and often invisible part of our everyday lives. (...) The only thing

that seems certain is that the Internet is changing rapidly”. I think she makes a really

good point here, because it articulates not only the ever-changing nature of the

internet, but also the extent to which we have embraced it and have built our lives

upon it.

A good way of demonstrating how the level of embracement is changing is to take a

look at the different generations’ lives. Based on Harry Wallop’s article published in

2014 in The Telegraph, Generation X people were born between the early 1960s and

─ 5 ─

the early 1980s, Generation Y people were born between the early 1980s and the mid-

1990s and the members of Generation Z are those who were born like after 1996 or so.

Now, how a friend of mine explained it, Generation X know exactly when they are using

the internet and what for, Generation Y cannot distinguish between using the internet

and not using the internet, because it is such an integrated and invisible part of their

lives, and Generation Z does not even understand the question.

This process was and is being further enhanced by the fast spread of smartphones

and the rise of Internet of Things (IoT) devices, alongside with the emergence of big

data technologies and artificial intelligence solutions.

The web itself started off as simple, static HTML pages referencing each other (Web

1.0) and then evolved into the Web 2.0 era which brought dynamic, complex websites,

extended social networks and lots of user generated content, all fostering

collaboration, communication and sharing. The definition of the third generation (Web

3.0) is way less clear, some even argue whether it has already started or we are still in

the time of Web 2.0.

Based on Nova Spivack’s research at the Lifeboat Foundation, the technologies and

concepts that build up the foundation of Web 3.0 are “semantic web, microformats,

natural language search, data-mining, machine learning, recommendation agents, and

artificial intelligence technologies — which emphasize machine-facilitated

understanding of information in order to provide a more productive and intuitive user

experience.” This generation is often referred to as ‘the Semantic Web’ and ‘the

intelligent Web’. Spivack also uses a diagram to illustrate the direction of advancement

in terms of ‘Semantics of Social Connections’ and ‘Semantics of Information

Connections’:

─ 6 ─

Figure 1. ‘Semantics of Social Connections’ and ‘Semantics of Information Connections’.

Source: Spivack (2016)

In 2008 Mills Davis conducted a profound, 720-page study on the evolution of the

web, and in his short executive summary there is a great diagram that aims to capture

the essence of the web generations. The horizontal axis shows the extent of social

connectivity and the vertical axis shows the extent of knowledge connectivity and

reasoning. The Web (1.0) connected information, The Social Web (2.0) connects

people, The Semantic Web (3.0) connects knowledge and The Ubiquitous Web (4.0) is

going to connect intelligence.

─ 7 ─

Figure 2. What is the Evolution of the Internet to 2020? Source: Davis (2008)

According to the statistics of www.internetlivestats.com, as of 17 April 2016 there are

approximately 3 350 500 000 internet users in the world which means that around 40%

of the world population has an internet connection today and the total number of

websites in the world is around 1 015 600 000. In Hungary the internet penetration is

estimated to be around 80.2% (in 2000 it was only 7%), while one of the most popular

Hungarian news & media website (index.hu) has about 40.6 million visits a month

(www.similarweb.com estimate, March 2016).

http://www.similarweb.com/

─ 8 ─

Figure 3. Total Number of Websites. Source: NetCraft and Internet Live Stats (2016)

"Website" means unique hostname (a name which can be resolved, using a name

server, into an IP Address). It must be noted that around 75% of websites today are not

active, but parked domains or similar. Periodic drops in the total count can depend on

various factors, including an improvement in NetCraft's handling of wildcard

hostnames.

Personally I think that responsive web design techniques (which make many

companies choose a mobile-friendly web UI over a native smartphone application) and

cloud computing (which moved lots of the traditionally desktop-based applications to

the web) are certainly among the many drivers of the leap in the number of websites.

This overview of the trends sort of explains why web development has become so

vital in today’s economy. Through this huge transformation the whole web industry has

boomed - both the demand and supply sides are getting stronger and stronger. On the

one hand, almost all existing companies need either a simple online presence or

advanced web based systems and there are countless new start-ups and businesses

─ 9 ─

that are formed specifically to exploit the opportunities that the web provides. On the

other hand, many companies deliver web development service, so in order to stay

ahead of the competitors, they need to adjust their skillset, technology and efficiency

to the increased needs (both in terms of speed of delivery and quality of

implementation).

Due to the increasing expectations regarding the speed of delivery and the quality of

implementation, developers also face new challenges. Complex problems usually call

for complex solutions, and developers need new approaches, skills and tools to

maintain speed and quality.

In the following chapter I am going to showcase a slice of the recent trends,

technologies and best-practices that are shaping the modern web development

environment and then later on I will also write about how they affect the business.

─ 10 ─

3. The technology trends

In this chapter I am going to elaborate on a number of important aspects that are

necessary to consider when someone wants to run successful and high quality web

development projects. I aim to give an overview on a broad spectrum of tools and

techniques which all contribute to an effective and efficient environment. I will focus

on the concepts and advantages of each of these, rather than on the exact details of

the implementation.

 Cloud computing 3.1.

Since the move to cloud computing is such an apparent phenomenon in the IT world

and I am going to mention cloud solutions many times in this paper, I find it important

to clarify and define the cloud right at the beginning.

“In the simplest terms, cloud computing means storing and accessing data and

programs over the Internet instead of your computer's hard drive.” (Griffith, 2015) To

be a bit more specific and in-detail, here is the definition of cloud computing that we

can find in the book called Cloud Computing Bible (Sosinsky, 2011): “Cloud computing

refers to applications and services that run on a distributed network using virtualized

resources and accessed by common Internet protocols and networking standards. It is

distinguished by the notion that resources are virtual and limitless and that details of

the physical systems on which software runs are abstracted from the user. (...) Cloud

computing makes the long-held dream of utility computing possible with a pay-as-you-

go, infinitely scalable, universally available system. With cloud computing, you can start

very small and become big very fast. That's why cloud computing is revolutionary, even

if the technology it is built on is evolutionary.”

Cloud has become mainstream in the field of web development too - almost every

major website and web service utilizes the cloud in one way or another. Taking a look

at the analysis of the RightScale report published by Ben Kepes (2015), we can see that

Amazon Web Services (AWS) continues to dominate in public cloud by 57% adoption,

followed by Microsoft Azure, Rackspace and Google.

Throughout the paper I am going to demonstrate several cloud services and their

benefits from both the IT and the business perspective.

─ 11 ─

 Programming languages and technologies 3.2.

A good number of different languages and technologies are used for web

development nowadays. I am not going to detail them or compare them, especially

because such comparisons and disputes usually result in senseless flame wars without

actually finding a winner, because obviously they all have advantages and

disadvantages, similarities and differences which make it impossible to simply

benchmark them. The goal of this section is just to give an overview of the most

commonly used ones.

3.2.1. Front-end

In front-end development (also called the client side - which is responsible for the

presentation layer, the user interfaces) the situation is quite simple in terms of

programming languages. Since XHTML and Flash are mostly out of business, there are

only 3 major languages used, each in its own domain: HTML is used as the markup

language to describe the content and structure of the website, CSS is used as the

presentation language to describe the look of the website through style sheets, and

Javascript is used as the programming language to make the interfaces interactive and

provide ways for asynchronous communication with the server. Even though the map

of front-end development languages seems to be clear and simple at first glance, the

ever-growing number of libraries, extensions, tools and frameworks have made it quite

messy and complex.

In the CSS world, the situation is still relatively easy to understand: on the one hand,

there are numerous CSS frameworks and standards to make naming and usage

conventions standardized and thus the CSS code sustainable, reliable and scalable. On

the other hand, the interpreted scripting languages that can be compiled to pure CSS,

like SASS and LESS are becoming widespread. These extend CSS by providing

mechanisms available in more traditional programming languages, like variables,

functions (called mixins), logical nesting, loops and inheritance.

In the field of Javascript development, there are a lot of libraries and frameworks that

are widely used. Each has its advantage and use case. They offer things like easier

handling of the DOM, dynamic views, quicker implementation of user interfaces,

advanced animations, enhanced event handling, versatility, extensibility and the list

goes on. There are also some which provide their own syntax and can be compiled into

─ 12 ─

Javascript. To mention a few, the most popular ones include jQuery, AngularJS, React,

Babel, Coffeescript, TypeScript, ExtJS, Impress.js, Backbone.js and D3.

When a huge set of Javascript tools and libraries are used for a project, managing

these external libraries and dependencies becomes a major headache for developers.

RequireJS and Browserify have gained ground because they can effectively make it less

of a hassle by their file and module loader solutions.

Frameworks that give both CSS and Javascript solutions and components are also

mainstream. Bootstrap and Foundation are the two dominant players in the market.

They are constantly developed to enable developers use out-of-the-box, easy-to-use

solutions to the real world challenges.

Regarding HTML, templates engines are often taken advantage of in order to reduce

code duplication and have a more maintainable HTML code base. The most popular

template engines operate on the server side (e.g. Smarty, Twig, Blade) but there are

also some client side templating systems, like Mustache.js and Handlebars.js.

As the last discussed piece of the front-end development technologies, it’s worth

mentioning Grunt and Gulp, which are task managers that are responsible for a lot of

the compilation and compression tasks and play a crucial part in the build processes.

They can compile SASS and LESS into CSS along with many extra functionalities (like

adding browser prefixes and compressing the resulting CSS files) and are also used to

validate, compile, concatenate and compress Javascript files.

3.2.2. Back-end

In back-end development (also called the server side - which is responsible for the

data manipulation and business logic) the selection of widely used programming

languages is a lot larger. PHP, Javascript (mainly NodeJS on the server side), Ruby,

Python, Perl, Java, C#, Scala and Go are all examples of popular languages that can be

used for web development.

Gathering reliable data on their respective popularity is extremely hard, because

most of the surveys are not representative and also quite a few of the languages are

used for multiple purposes, which makes measuring the actual usage for web

development impossible. Still I would like to show some statistics that demonstrate the

situation broadly.

─ 13 ─

Stack Overflow, the huge question and answer site for programmers has been

conducting an extensive developer survey each year since 2013. These surveys reveal a

lot about the technology trends. This year (2016) more than 56.000 coders in 173

countries answered their questions, and the collected data shows that JavaScript is by

far the most popular programming language, but since its main domain is still the client

side, it does not say much about its ranking among the back-end technologies. The

following graph shows the results:

Figure 4. The most popular programming languages. Source: Stack Overflow (2016)

This data is actually not very precise regarding web development, because as I have

already mentioned, the first ranked Javascript mostly covers front-end development,

SQL is for databases, Java and C# are extensively used outside the web development

area, while C++, C and Objective-C are never or rarely used for web development. Still,

it gives a notion of the prevalence of the languages.

─ 14 ─

Taking a look at previous year’s data, the biggest change regarding the web

development languages is that PHP’s 34.8% result in 2013 shrinked to 25.9% by 2016 in

favor of emerging languages.

Gerard Millares in an article published in 2015 writes that “more than 75% of the top

websites use PHP as their server side programming language”. The source of the data is

not clear so we should have reservations about this information, but it’s interesting to

see it along with his following statement: “even though PHP is the by a far margin, the

most used server side programming language, it is amusing that when it comes to

websites that attract high traffic, Java and Javascript are the clear winners. While

around 82% of websites with Java as their server side language attract high traffic, the

value drops to below 15% for websites having PHP as their server side language”. You

can see more information about this on his diagram:

Figure 5. Programming Language vs High Traffic Websites. Source: Millares (2015)

In addition to the presented facts that PHP is gradually losing ground and is mainly

used for low-traffic sites, in my personal opinion PHP is also a language that is generally

perceived as a not “trendy”, not “sexy” programming language. This notion might have

been somewhat improved by the new versions of the language that introduced very

─ 15 ─

important new features and language constructs and also addressed the performance

issues and made PHP programs run way faster.

Those topics in my paper that are programming language specific assume that PHP is

used for the back-end because that’s what I am most familiar with.

Unlike in the previous front-end development section, I am not going to write about

frameworks and tools here, because they are going to be discussed later on, for

instance in Section 3.3.1.

3.2.3. Databases

There is a breadth of options when it comes to databases, and most of the key

players have been around for long and keep their positions in the market. However, as I

see it, there are some major trends happening there that are reshaping the landscape. I

am going to reveal some statistics first and then elaborate on these trends.

The Vienna-based SolidIT Consulting & Software Development GmbH has developed

an advanced algorithm, called DB-Engines Ranking, that measures the popularity of the

database systems based on publicly accessible data by using a combination of metrics.

Here is their latest data from April 2016:

─ 16 ─

Figure 6. DB-Engines Ranking. Source: SolidIT (2016)

The traditional relational database managements systems (RDMS) enjoy clear

dominance and will most probably remain strong, because they are a perfect choice in

many cases and what is more, most developers are used to working with them. The 3

top SQL-based databases currently are Oracle, MySQL and MS-SQL based on the DB-

Engines Ranking, but personally I think that specifically for web development purposes

MySQL and PostgreSQL are the two winners.

The first major trend we can see though is the rise of alternative database

technologies. In the past few years, NoSQL (also called nonrelational) databases

became very popular and widely used. But what exactly does the term mean? In the

preface of NoSQL Distilled (2012), Sadalage and Fowler explains it this way: “The term

‘NoSQL’ is very ill-defined. It’s generally applied to a number of recent nonrelational

databases (...) They embrace schemaless data, run on clusters, and have the ability to

trade off traditional consistency for other useful properties. Advocates of NoSQL

databases claim that they can build systems that are more performant, scale much

─ 17 ─

better, and are easier to program with.” MongoDB, Cassandra, Redis, Riak, Neo4j,

CouchDB, HBase / Hadoop, Google Cloud Bigtable and Amazon DynamoDB are all

examples of NoSQL databases, even though they employ a number of different logical

models. A lot of, mainly large-scale, web development projects have decided to utilize

the advantages of NoSQL technologies.

Although three years ago there was only one NoSQL database in the top 10 of the

aforementioned list, now there are three (all of which is “schema-less”) which shows

that they’re gaining momentum. This graph, based on the same DB-Engines Ranking

data, captures the trends quite well:

Figure 7. DB-Engines Ranking. Source: SolidIT (2016)

It is worth noting about these statistics that the calculation takes into account metrics

like search volume in Google or mentions in forums and social media. This can lead to

distorted results, because just that something is searched for or talked about does not

mean that it is actually loved and used. For example, people probably talk a lot more

about the issues of a particular system than about the happy moments, or maybe the

topic is the struggle to migrate to another, better database. Nonetheless, these figures

give a glimpse of the database market and are good enough estimations, especially

─ 18 ─

because it is virtually impossible to gain data about the number of active installations

or other relevant metrics.

The second major trend is pointed out very clearly by Pramod J. Sadalage in an article

published in 2014: “There is also movement away from using databases as integration

points in favor of encapsulating databases with applications and integrating using

services”. Instead of many applications relying on the same enormous database to

share information, the big systems are often broken down into smaller web services

with their own smaller databases, and the information sharing happens through the

services’ communication. It is very closely tied to microservices (about which I am going

to write later in Section 3.6) and also to the so-called Polyglot Persistence concept,

which is a very important result of the rise of NoSQL databases.

Polyglot Persistence means that “it is best to use multiple data storage technologies,

chosen based upon the way data is being used by individual applications or

components of a single application. Different kinds of data are best dealt with different

data stores.” (Serra, 2015) To explain both Polyglot Persistence and the encapsulation

of the database with services, I am referencing NoSQL Distilled again, because the

authors created a really good set of charts to demonstrate the process of moving from

a large relational database that is responsible for all the data (Step 1) to using different

database engines for different purposes (Step 2) and then finally wrapping those

datastores into services (Step 3):

─ 19 ─

Figure 8. Step 1: Use of RDBMS for every aspect of storage for the application. Source:

Sadalage - Fowler (2012)

Figure 9. Step 2: Example implementation of polyglot persistence. Source: Sadalage - Fowler

(2012)

Figure 10. Step 3: Using services instead of talking to databases. Source: Sadalage - Fowler

(2012)

The third trend that I would like to mention is that of moving databases to the cloud.

There is no big surprise here, it is just a part of the whole cloud trend, but beyond

─ 20 ─

simple database hosting, companies like Amazon and Google provide cheap fully-

managed cloud database servers that take a lot of burden off the shoulders of web

developers and operation people. To see its benefits it is enough to mention a few of

them, e.g. automated backups, automatic failure detection and recovery, software

patching, security and access control, scalability, high availability and speed.

Having seen this impressive list of benefits we can say that these services are an ideal

choice for both traditional relational and nonrelational databases. This is true and they

are widely used for lots of web development projects indeed - I also have experience

with these and I am absolutely satisfied with them so far.

However, I must note that relational and nonrelational databases have one very

important difference at this point. While a relational database is typically supposed to

run on a single machine and thus can only be scaled vertically, most of the NoSQL

databases are designed to run on a cluster of machines which makes it easy to scale

them horizontally (I am going to provide more information about the types of scaling

later in Section 4.1). It means that the cloud database services can provide an even

bigger advantage for distributed NoSQL databases by making it possible to

automatically spin up or terminate nodes based on the load.

 Build your own or use an existing solution? 3.3.

This is a very important question, and the answer is, of course: it depends. I’ll start

with discussing the most common case and then I’ll also mention the case when it can

make sense to act differently.

In my opinion, it is essential to be familiar with and know how to use third-party

services, libraries and tools, because we need to provide a large set of functionality

while maintaining fast and agile development. Nowadays web products need to satisfy

a broad spectrum of needs, and most of the time there is just not nearly enough time

and know-how to develop all those features.

Usually developers would rather build everything from scratch, but implementing

your own solutions to common problems takes a whole lot of time. And it’s not just the

time it takes to write the actual code, but also the great amount of time that you need

to invest in gaining the domain specific knowledge that you need for that particular

piece of software. What’s more, you can never perform as thorough testing and

─ 21 ─

refinement as widely used software packages have already got, because they have a

broader user and developer base that they can rely on.

As the saying goes: “Don’t reinvent the wheel!”

Package managers (for instance: Composer, Npm, Bower, Rubygems) enjoy

outstanding popularity nowadays, because they have made it easy to download, install

and update packages from external sources, and they enhanced the trend to move in

this direction. What you need to consider is whether you always want to get the latest

version of the code automatically or you want more predictability by making sure that

the underlying codebase does not change between releases. It depends on the

situation, but I think that in most cases the best way to go is manually updating the

external packages regularly to get the bug fixes and improvements and having tests

that ensure that the new version behaves the same way the previous version did.

There are many cloud services available out there that you can integrate to your

workflow by connecting to it through an API. If you need to have full control over the

service, in many cases you can choose to install it on your own server instance instead

of using the cloud version. By hosting it, you take over some of the pain of operations

but it can be necessary for some network security and availability concerns.

It is strongly recommended to use only properly tested, reliable, well-documented

third party libraries, tools, services and APIs. I have had some bad experiences with

services that were in an early stage and had not been used and tested out in the wild

yet. It means that we wasted lots of time and money both on the integration (poorly

documented endpoints, a good number of emerging issues), on the bug fixing and on

moving on to a more stable service and doing a major clean-up and refactor in our

code.

Choosing a good library or service in and of itself will not necessarily take you ahead

of the curve because many others use them. Utilizing these in the right combination,

however, might give you a competitive advantage. It is important to understand what

each of these tools are designed for, what their strengths and weaknesses are, how

they integrate with the packages that are already in use and how you can tailor them to

your specific needs.

Above a certain size and complexity, it might make sense to build our own version of

the third party libraries and tools to make it a perfect fit for our needs and decrease

─ 22 ─

dependency on others. I have seen it happening at bigger projects, that in the

beginning they decided to use a third-party solution for something, but then later on,

as the project grew and they wanted to be more independent and wanted to have even

better performance, they started building their own tools. Obviously, it can only

happen when you can afford it both in terms of financials and know-how.

3.3.1. Frameworks

This topic is also part of the “Build your own or use an existing solution?” question.

Just as libraries, modules, tools and external services, nowadays frameworks are also

widespread and play a substantial role in web development projects. How do they

contribute to the success of a project?

“Frameworks are about efficiency and effectiveness. They save you time. By forcing

common conventions, a framework helps solve common issues like view rendering,

asset generation, security, application configurations -- things that happen in every web

application. This is good. It brings consistency to decisions. Instead of implementing a

feature by writing a number of custom modules, all we have to do is implement it the

way the framework wants us to. This saves us time and headaches, and makes the

development process easier.” (Megyesi, 2012) And this list of benefits is far from being

exhaustive, it could go on with numerous challenges and problems that they provide

built-in solutions for. There is also another important factor which I will write about in

the People as Single Points of Failure section (Section 4.4.3).

Megyesi mentions an interesting disadvantage too that is worth bearing in mind:

“because frameworks are so good at making decisions for us, we get lazy. Instead of

thinking hard about how to build a clean system with crisp abstractions, we think about

what the framework would want us to do, regardless of whether the resulting code is

clean.”

Talking about web development frameworks, the MVC pattern (Model - View -

Controller) is a crucial concept as it has been mainstream for a long time and lies under

a very big chunk of the world’s websites. When used properly, it can simplify the

development and increase the quality and maintainability of the code base. Krzysztof

Rakowski in a 2011 Smashing Magazine article explains the pattern briefly by saying

that “MVC is a software architecture that allows for the separation of business logic

from the user interface. In this architecture, the user sees and interacts with the view

─ 23 ─

that, in the case of Web applications, is generated HTML code (along with JavaScript,

CSS, images, etc.) User actions are passed (as HTTP requests, GET or POST methods) to

the controller. The controller is a piece of code that handles and processes user input

and then reads and makes necessary changes to the model, which is responsible for the

storage and modification of data. (In simple terms, the model consists of the database

structure and contents, and the code used to access it.) Then, the controller generates

the proper view that will be sent and displayed to user. “

Figure 11. MVC pattern (Model - View - Controller). Source: Moock.org (2016)

Regarding PHP, there are a couple of very strong competitors in the field of

frameworks. Obviously, just the same way as for all the other topics in this paper, it is

practically impossible to gather reliable data on the actual usage and popularity of the

key players, but I have found two sets of data that are worth presenting. The first is the

result of the 2015 edition of the annual SitePoint framework popularity survey which

Bruno Skvorc published at the end of March 2015:

─ 24 ─

Figure 12. PHP Framework Popularity at Work. Source: Skvorc (2015)

The impressive ranking of Nette and PHPixie is a bit surprising and might be down to

the relatively small sample size and the attention of their communities at that given

time which might have led them to active participation in the survey. The order of

Laravel, Symfony2, CodeIgniter and Yii 2 appears to be a more realistic result.

I also collected data using Google Trends and visualized the results. The graph simply

shows the web search interest over time for the given keywords between 1 January

2006 and 23 April 2016:

─ 25 ─

Figure 13. Web search interest over time for PHP frameworks. (My own work, 2016)

This chart does not take the different versions of these frameworks into

consideration, but still shows the major trends in the market: Symfony and CodeIgniter

have been strong for a quite long time while Laravel appeared from nowhere and took

the lead by an extremely fast increase in popularity. Yii, CakePHP and Zend Framework,

on the contrary, are gradually losing ground in favor of others.

3.3.2. Content management systems

As the last point in this section, I would like to show the current landscape in a

crowded niche market: the content management systems (CMSs), which are widely

used for various purposes. Even though web developers who prefer crafting bespoke

software tend to despise the common content management systems, it is clear that

both the demand and the supply remains strong in the CMS market and they mean a

perfect solution for lots and lots of projects.

As usual, there is no precise usage data available due to the complexity of

measurement, but the statistics are good enough to point out the key players in the

market. The data collected by W3Techs.com shows that as of April 2016 Wordpress has

approximately 59.4% market share and interestingly it powers over 26% of all the

websites in the world.

─ 26 ─

Figure 14. Most popular content management systems. Source: W3Techs.com (2016)

The global OpenSource CMS information provided by the Wappalyzer browser add-on

which covers roughly 1% of the entire web leads to the same conclusion that, as of

April 2016, Wordpress, Joomla and Drupal are the major competitors, and Wordpress is

enjoying significant dominance.

Figure 15. Market share of CMS systems. Source: OpenSource CMS (2016)

─ 27 ─

 Version control 3.4.

Version control and Git are common buzzwords in the developer scene. I don’t think

many would argue with saying that nowadays version control is an absolute must for

every web development project, and fortunately even amateur developers and

developers of small-scale projects tend to use it as a foundation for the code base. But

what does version control mean?

"Version control is a system that records changes to a file or set of files over time so

that you can recall specific versions later. For the examples (...) software source code as

the files being version controlled, though in reality you can do this with nearly any type

of file on a computer. (...) It allows you to revert files back to a previous state, revert

the entire project back to a previous state, compare changes over time, see who last

modified something that might be causing a problem, who introduced an issue and

when, and more. Using a VCS (Version Control System) also generally means that if you

screw things up or lose files, you can easily recover. In addition, you get all this for very

little overhead.” (Chacon - Straub, 2014)

There are centralized (e.g. CVS, Perforce, SVN) and distributed (e.g. Git, Mercurial)

VCSs. “The main difference between the two classes is that Centralized VCSs keep the

history of changes on a central server from which everyone requests the latest version

of the work and pushes the latest changes to. On the other hand, on a Distributed VCS,

everyone has a local copy of the entire work’s history. This means that it is not

necessary to be online to change revisions or add changes to the work.” (Vergara,

2012).

I personally prefer using Distributed VCS, Git to be specific, and as I see, the trends

are all going in this direction, especially because the majority of the open-source

projects use Git.

Git is the actual command line tool that we can use locally to version control our files.

We can also set it up on a server and use it as a remote repository where we can push

our changes or, not surprisingly, we can also use a cloud repository as the remote.

What makes the well-known cloud repository services (e.g. Github, Gitlab, Bitbucket)

particularly interesting is that not only do they provide a repository hosting service but

they also provide an extensive service package built around the Git technology. Most of

them have collaboration and communication features, wikis and issue tracking

─ 28 ─

capabilities, plugins for integration with other software products, continuous

integration tools and even free or cheap hosting of websites. What’s more, Github has

managed to build a huge and active community that contributes to the success of lots

of open-source projects.

 Server environment 3.5.

Having discussed how cloud is gaining ground in the industry, it is no surprise that in

the past few years the biggest part of the server infrastructure that is behind the

majority of the websites in the world has moved to the cloud too. Hosting a website on

a cloud server has numerous advantages over traditional solutions and thus has

become mainstream.

There are many popular providers that make a broad variety of of Software as a

Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS)

services available to developers. I am not going to elaborate on all these different kinds

of services and providers, but I would like to mention Amazon Web Services (AWS),

Microsoft Azure, Rackspace, Google Cloud Platform, Heroku, DigitalOcean and

OpenShift to name a few of the most popular providers.

To illustrate the wide range of solutions briefly, I am going to write a few examples

about what is possible with Amazon Web Services. I am sure that these things can also

be achieved by other providers, but AWS is the one that I personally have experience

with.

Instead of buying and maintaining your own server, you can use the virtual private

servers available in the AWS Elastic Compute Cloud (EC2) service. You can spin up new

instances in minutes and can also tailor them to your specific needs (e.g. configuration

of memory, CPU, instance storage and boot partition size). You have full control over

the virtual server instances and can configure custom security groups and access levels.

What is more, the Amazon EC2 Service Level Agreement ensures 99.95% availability

which would be quite hard and expensive to achieve on your own server. You are not

even bound to a single physical location because you can launch instances in quite a

few different locations (so-called regions) around the globe. Domain name and DNS

management is not a problem either thanks to the AWS Route 53 service.

AWS also makes it easy to scale up and down the performance of our instances and

even to launch or terminate instances automatically based on a set of rules. They also

─ 29 ─

have a great load balancing service as well as monitoring and reporting services.

Scalable content storage and content delivery network are also available in the set, as

well as an email sending service (which takes a burden of installing a mail server off

your shoulders), notification service, queue service, continuous deployment, container,

database and cache services.

Even without going into details we can get a glimpse of how the various challenges

can be solved with relative ease and low costs in a modern web development

environment.

3.5.1. Containers

Beyond the virtualization and cloud dominance, containerization is also a very

prominent trend nowadays. This technology is not new at all, but it wasn’t very widely

used before 2013 when Docker, Inc announced, launched and open-sourced its

container engine.

“Container virtualization is often called operating system-level virtualization.

Container technology allows multiple isolated user space instances to be run on a single

host. (...) Docker is an open-source engine that automates the deployment of

applications into containers. (...) So what is special about Docker? Docker adds an

application deployment engine on top of a virtualized container execution

environment. It is designed to provide a lightweight and fast environment in which to

run your code as well as an efficient workflow to get that code from your laptop to your

test environment and then into production. (...) Docker aims to reduce the cycle time

between code being written and code being tested, deployed, and used. It aims to

make your applications portable, easy to build, and easy to collaborate on.” (Turnbull,

2014)

Since it is a great and useful technology, companies started adopting it rapidly and

within less than 3 years it has become extremely popular.

3.5.2. Operating systems and web servers

Finally, let us take a look at what operating systems run typically on servers used for

web development and which web servers are in use.

According to the data collected by W3Techs, as of 30 April 2016 67.8% of the

websites using Unix-based operating systems (among which Linux is said to be the most

─ 30 ─

popular), 32.2% of the websites use Windows and Apple’s OS X is used by less than

0.1% of the websites.

Figure 16. Usage of operating systems for websites. Source: W3Techs (2016)

From Netcraft’s March 2016 Web Server Survey we can see that 32.4% percent of all

the websites in the world were running on Apache webserver, not much ahead of

Microsoft IIS. Nginx and Google Web Server (GWS) are also in the top 4.

Figure 17. Web server developers: Market share of all sites. Source: NetCraft (2016)

─ 31 ─

Figure 18. Web server developers: Market share of all sites. Source: NetCraft (2016)

What is interesting is that these results are significantly different for the top million

busiest websites:

Figure 19. Web server developers: Market share of the top million busiest sites. Source:

NetCraft (2016)

─ 32 ─

Figure 20. Web server developers: Market share of the top million busiest sites. Source:

NetCraft (2016)

The chart also shows that nginx’s market share is massively increasing among the top

performers of the industry.

 Microservices 3.6.

The term microservices is the latest buzzword in web development that you hear

about every day multiple times and there is no conference or meetup event where it is

not mentioned or talked about. However, just that the term is overused, does not

mean that it has lost its power - in fact, countless development teams are considering

or are actively working on moving to a microservice-based architecture, not to mention

the companies that had already embraced the idea years ago.

The concept is very much the same as what I have already written about in the

Databases section (Section 3.2.3) in relation with Polyglot Persistence. The main idea is

splitting the big monolith systems into smaller, independent modules (services) that

communicate with each other (typically via RESTful interfaces).

“Microservices are an approach to distributed systems that promote the use of finely

grained services with their own lifecycles, which collaborate together. Because

microservices are primarily modeled around business domains, they avoid the

problems of traditional tiered architectures. Microservices also integrate new

technologies and techniques that have emerged over the last decade, which helps

them avoid the pitfalls of many service-oriented architecture implementations. (...)

Microservices are small, autonomous services that work together.” (Newman, 2015)

Benjamin Wootton in a 2016 article writes about various benefits of microservices.

For example, “in a Microservice architecture, you should be able to deliver new

functionality and iterate on the system faster than you would be able to on a more

monolithic architecture. (...) We can modify just one system component, test it, and

then push it to production outside of any centrally mandated release cycle. This is a

much faster and more agile way to ship new software features”. In addition to the

polyglot persistence, “because of the isolation and independence of the Microservices,

individual services can be polyglot in terms of programming language [too], giving us

the ability to use ‘the right tool for the job’”. He goes on saying that “in a Microservice

world we can be much more flexible and scale individual services up and down as

─ 33 ─

necessary, giving the system a much more dynamic property that is well suited to an

elastic cloud environment”. Last but not the least, “both the Microservice architecture

and the way it is usually approached typically gives us a high degree of resilience as a

property of the system”.

Needless to say that the rise of microservices brings about a breadth of new problems

and challenges too, for instance network and operational complexity, data consistency

and distribution issues and monitoring and debugging difficulties. Obviously these also

drive the growth of new services and tools aiming to ease the pains of the developers

and operation people.

 The API world 3.7.

When discussing the most important aspects of modern-day web development, the

term API surely needs to be mentioned. APIs are ubiquitous and power so many of the

websites and services that we use daily. And not only are they present on the web but

in fact, “APIs aren’t at all new; whenever you use a desktop or laptop, APIs are what

make it possible to move information between programs”. (Proffitt, 2013)

“API stands for application programming interface. (...) An API is a way for two

computer applications to talk to each other over a network (predominantly the

Internet) using a common language that they both understand. (...) There are APIs that

are open to any developer, APIs that are open only to partners, and APIs that are used

internally to help run the business better and facilitate collaboration between teams.

An API, then, is essentially a contract. Once such a contract is in place, developers are

enticed to use the API because they know they can rely on it. The contract increases

confidence, which increases use. The contract also makes the connection between

provider and consumer much more efficient since the interfaces are documented,

consistent, and predictable.” (Jacobson - Brail - Woods, 2012)

It probably helps understand a bit more what I wrote about in the ‘Build your own or

use an existing solution?’ and ‘Microservices’ chapters. Developers can incorporate the

extra knowledge or features provided by external services by sending requests to and

receiving responses from their APIs and microservices also communicate with each

other through APIs.

Today the web is an ever-growingly dense network of interconnected applications

that rely on one another for pieces of information that they themselves do not possess.

─ 34 ─

To name a few, some widely used examples include the APIs of Google, Facebook,

Twitter and Dropbox or the wealth of integrations available in the major project

management, communication, customer relationship management, ERP, online

payment, billing and continuous deployment software products.

Regarding the means to access a web service, there are two main approaches: SOAP

(Simple Object Access Protocol) and REST (Representational State Transfer). As I see it,

REST has overtaken and left SOAP behind by miles and is used far more often

nowadays. Steve Francia in a 2010 article wrote that “the general rule of thumb I’ve

always heard is ‘Unless you have a definitive reason to use SOAP use REST’. (...) RESTs

sweet spot is when you are exposing a public API over the internet to handle CRUD

operations on data. REST is focused on accessing named resources through a single

consistent interface. SOAP brings its own protocol and focuses on exposing pieces of

application logic (not data) as services. SOAP exposes operations. SOAP is focused on

accessing named operations, each implement some business logic through different

interfaces. (...) Since REST uses standard HTTP it is much simpler in just about every

way. Creating clients, developing APIs, the documentation is much easier to understand

and there aren’t very many things that REST doesn’t do easier/better than SOAP.”

He also notes that “REST permits many different data formats whereas SOAP only

permits XML. (...) JSON usually is a better fit for data and parses much faster. REST

allows better support for browser clients due to its support for JSON”. What is more,

“REST has better performance and scalability. REST reads can be cached, SOAP based

reads cannot be cached”.

One of the trends that I have personally seen in the PHP world is that

microframeworks optimized specifically for APIs (e.g. Lumen, Slim, Silex) get more and

more exposure due to the increasing demand for APIs.

The other one is that at some projects, beyond the MVC pattern’s separation of

concerns, there is a complete separation of the front-end and the back-end. How it

works is that the back-end system knows nothing about view rendering or anything of

that kind, it just simply provides a RESTful API. This way the front-end can be

completely independent, developed by a different team and even located elsewhere. In

a common case it would consist of a Javascript framework (e.g. Angular) that

communicates with the back-end API.

─ 35 ─

 Software testing 3.8.

Back in 2008, Paul Ammann and Jeff Offutt in the book called ‘Introduction to

Software Testing’ wrote that “not very long ago, software development companies

could afford to employ programmers who could not test and testers who could not

program. (...) Software testing in industry historically has been a nontechnical activity.

Industry viewed testing primarily from the managerial and process perspective and had

limited expectations of practitioners’ technical training. As the software engineering

profession matures, and as software becomes more pervasive in everyday life, there

are increasingly stringent requirements for software reliability, maintainability, and

security. Industry must respond to these changes by, among other things, improving

the way software is tested”.

This improved way of testing prefers automated, scripted testing over manual testing

(although manual testing is still present and necessary in many cases) and also moves

the responsibility of writing the testing code from a tester to the developer.

Software testing has gradually become more and more prominent in the web

development scene too. Fortunately in the past few years the idea and practice of

testing became mainstream and today we can say that the majority of professional web

developers, especially the ones working on big projects write tests every day, as an

integral part of their job. What is more, the test-driven development (TDD) approach,

which means that first you must write a test that fails before you write the actual code,

gets significant attention and popularity in web development too.

Profound software testing is crucial everywhere for quality assurance, but in my

opinion automated testing is particularly important in the field of web development,

because unlike other kinds of software products that ship their new versions in certain,

relatively rare intervals, the deployment of code changes should be continuous in a

web environment. I am going to write more about continuous deployment later on, but

it is important to note that without proper automated testing, it would mean an

incredibly high risk to roll out new versions not having some extent of confidence that

every part works as it should. If our test suites cover the whole application (in an ideal

world) and all the tests passed then we can be fairly sure that there no major drama is

about to happen.

─ 36 ─

Writing tests takes up a big chunk of a developer’s time and can seem tedious

sometimes, but actually it saves a lot of time, effort and stress when it comes to

altering complex parts or performing refactoring, not to mention the confidence and

peace of mind during releasing code changes and the decrease in the number of bugs.

There are several testing frameworks available for PHP which make testing easier and

more effective. The best-known solutions include PHPUnit, Codeception, Behat,

PHPSpec and Selenium. There are also some great cloud services which make

automated cross-browser website testing possible.

 Continuous Integration and Deployment 3.9.

Continuous Integration and Continuous Deployment are key terms in today’s web

development environment. The concepts do not mean the same thing but they are very

closely related to each other and usually go together.

3.9.1. Continuous Integration

The great minds at ThoughtWorks explained Continuous Integration (CI) in an article

as “a development practice that requires developers to integrate code into a shared

repository several times a day. Each check-in is then verified by an automated build,

allowing teams to detect problems early”. Martin Fowler, Chief Scientist at

ThoughtWorks adds that “Continuous Integration doesn’t get rid of bugs, but it does

make them dramatically easier to find and remove”.

At first glance setting up and maintaining a process like that might seem like an

overhead, but in reality, it can save a lot of time, energy and headache. I have learnt it

the hard way through countless occasions of spending hours resolving conflicts that

emerged during merging long-lived Git branches back to the main branch. Now, at

JóSzaki, we push most of the commits right into the common develop branch and even

if we need to create a separate branch for some reason, we keep it up-to-date and

merge it back as soon as possible. Also whenever a new commit is pushed to the

repository, the build and the tests are executed automatically and we can see

straightaway if something goes wrong (we even get notifications to a Slack channel).

I love how the authors of the previously mentioned article put it into words:

“Continuous Integration is cheap. Not continuously integrating is costly. If you don’t

follow a continuous approach, you’ll have longer periods between integrations. This

─ 37 ─

makes it exponentially more difficult to find and fix problems. Such integration

problems can easily knock a project off-schedule, or cause it to fail altogether.”

Martin Fowler in his 2011 article uses a funny but self-explanatory chart to

demonstrate how the frequency of integrations reduces the difficulty of each

integration:

Figure 21. Frequency Reduces Difficulty. Source: Fowler (2011)

“If you have this kind of exponential relationship, then if you do it more frequently,

you can drastically reduce the pain. And this is what happens with Continuous

Integration - by integrating every day, the pain of integration almost vanishes. It did

hurt, so you did it more often, and now it no longer hurts”. (Fowler, 2011)

3.9.2. Continuous Deployment

Continuous Deployment (CD) is only about taking one more step in the same

direction: it basically means that every commit pushed into the shared repository that

passes the automated tests and produces a successful build gets automatically and

instantly release (deployed) into the production environment. Here is a bit more in-

depth explanation that reveals the background and significance of such an automated

process:

“Most modern applications of any size are complex to deploy, involving many moving

parts. Many organizations release software manually. By this we mean that the steps

─ 38 ─

required to deploy such an application are treated as separate and atomic, each

performed by an individual or team. Judgments must be made within these steps,

leaving them prone to human error. Even if this is not the case, differences in the

ordering and timing of these steps can lead to different outcomes. These differences

are rarely good. (...) Over time, deployments should tend towards being fully

automated. There should be two tasks for a human being to perform to deploy

software into a development, test, or production environment: to pick the version and

environment and to press the “deploy” button. (...) The automated deployment

process must be used by everybody, and it should be the only way in which the

software is ever deployed. This discipline ensures that the deployment script will work

when it is needed. One of the principles that we describe in this book is to use the

same script to deploy to every environment. If you use the same script to deploy to

every environment, then the deployment-to-production path will have been tested

hundreds or even thousands of times before it is needed on release day. If any

problems occur upon release, you can be certain they are problems with environment-

specific configuration, not your scripts.” (Humble - Farley, 2010)

One of the reasons why I really like this approach is that the quick fixes, minor

improvements and small features that used to wait in the queue for days or weeks can

now be deployed almost immediately and beyond its positive implications for quality,

in some way it even gives the developers a sense of progress and impact - they can see

the result and consequences of their work right away in production. On the one hand,

it eases the pressure to get everything perfect because you can make very short

iterations and these “not-yet-perfect” versions give you instant feedback and reveal the

accidental mistakes. On the other hand, developers are urged to ensure consistent

quality and releasable code at all times, because poorly written code fragments are

likely going to bring about issues straightaway.

These are quite a few popular continuous integration tools available that make it very

easy to setup a highly automated process. Most of these tools can observe certain

events in our cloud Git repository and respond with custom actions like running the

test cases or starting the deployment process, access our cloud server instances and

perform changes necessary for deployment and even communicate with a number of

external services (e.g.: send the new version number to Sentry, update tickets in the

project management systems, send notifications to a Slack channel, etc…). Some of the

─ 39 ─

most popular continuous deployment software are Jenkins, Travis CI, Codeship, CircleCI

and GitLab CI.

We can see that this topic brought together many previously discussed things, for

instance the cloud technologies, server infrastructure, version control, APIs and

software testing. These can all come together very nicely and can thus result in a

modern and highly efficient environment. The key question is how you can integrate

these tools and services in order to get a powerful combination of them. It is all about

synergy, when the sum of the power of the parts is less significant than the actual

power they produce when they all come together. This positive synergy is also called

the 2 + 2 = 5 effect (Reference for Business, Encyclopedia of Management). This means

that it is not sufficient to choose good tools and services, but we also need to

understand what they are designed for and how they will cooperate with all the other

things that are in use in our project. The ultimate goal is to achieve an environment

that enables web developers and web developer teams to maximize their potential.

 DevOps culture 3.10.

Now, at the end of the ‘The technology trends’ chapter, I would like to mention a

phenomenon that is less of a technical and more of a cultural and organizational matter

by nature.

The evolution of the so-called DevOps culture has a significant effect on a web

developer’s life and daily tasks. Traditionally development used to be somewhat

separated from operations, maintenance and deployment activities, but this situation is

being transformed into a new set-up where either there is a strong and active

collaboration between development and operations or developers even take over a

part of or all of these tasks.

“An attitude of shared responsibility is an aspect of DevOps culture that encourages

closer collaboration. It’s easy for a development team to become disinterested in the

operation and maintenance of a system if it is handed over to another team to look

after. If a development team shares the responsibility of looking after a system over

the course of its lifetime, they are able to share the operations staff’s pain and so

identify ways to simplify deployment and maintenance (e.g. by automating

deployments and improving logging). They may also gain additional observed

─ 40 ─

requirements from monitoring the system in production. (...) DevOps culture blurs the

line between the roles of developer and operations staff and may eventually eliminate

the distinction.” (Wilsenach, 2015)

─ 41 ─

4. The business perspective

So far I’ve been writing mostly about what technology is available, what it looks like

and what it is capable of doing. Although these solutions can be really exciting from a

developer’s point of view, we must also see that even if an ideal, perfect software and

server environment existed, in and of itself it wouldn’t be worth much without

delivering value to the business. This is why I find it important to take a close look at

what the main factors are from a business perspective and what the business can gain

and benefit from the technology shifts.

 Scalability 4.1.

Scaling has been mentioned many times in this paper already, and it is a very

important topic indeed. In this context scaling up basically means keeping the behavior

of a website or web service unchanged despite the increasing load (which usually

means the number of users). It comes into play either when the traffic is growing over

time or when unusually high traffic hits the web server, for example thanks to a

marketing campaign or some other event that causes a swift increase in interest. In

most cases, increasing the computing capacity of the server (e.g. CPU, memory) solves

the problem. Scaling down, on the other hand, means lowering the performance of the

system when less computing power is enough.

There are two distinctively different types of scaling: vertical scaling (also called

scaling up) and horizontal scaling (also called scaling out). A 2014 David Beaumont

article explains it this way: “Vertical scaling can essentially resize your server with no

change to your code. It is the ability to increase the capacity of existing hardware or

software by adding resources. Vertical scaling is limited by the fact that you can only

get as big as the size of the server. Horizontal scaling affords the ability to scale wider

to deal with traffic. It is the ability to connect multiple hardware or software entities,

such as servers, so that they work as a single logical unit. This kind of scale cannot be

implemented at a moment’s notice.”

I drew a chart to illustrate the difference:

─ 42 ─

Figure 22. Vertical and Horizontal Scaling. (My own work, 2016)

According to Amir Shevat (2008), for “small scale application scaling up [vertical

scaling] might be cheaper and faster to develop and implement” but “it is a costly and

not an infinite solution, (...) there is a physical limitation to the computing power and

memory you can have in a single computer”. For large applications horizontal scaling is

better, because it “offers infinite scalability, when you need to support more users you

just add more low cost computers to your server farms. On the other hand, this is not a

straightforward solution. You need to design, architect, and develop your application to

be ready to scale out”.

The great news here from a business perspective is that on a cloud server

infrastructure (that I described in Section 3.5) horizontal scaling can be achieved easily

(even automatically) and most importantly, cost efficiently, instead of spending a large

sum on scaling up the application vertically. If the application is built on a microservice

infrastructure, it is enough to launch new nodes of the services which are performance

bottlenecks, as opposed to scaling up the entirety of a monolithic application. The

performance, resources and costs can be tailored to the actual demand and needs. For

example, during marketing campaigns or in times of the year when we expect higher

traffic we can scale up the application while in less busy periods we can scale it down.

─ 43 ─

It makes it easy to introduce new services or features or to expand the service to new

areas or even to new countries or continents. In case of a geographic expansion a great

solution could be to spin up new instances in another availability zone which is closer

to the newly targeted areas to provide their users with low latency.

 Costs 4.2.

For businesses, operational costs are always of very high importance, so I find it

worthwhile to take a look at how the costs are affected and changed by the direction in

which web development is moving.

Very much the same way as in other industries, we can say that automation in

general frees up human resources and thus saves money. It is worth the effort to

provide the developers with an environment where they can effectively and efficiently

collaborate with each other and can create outstanding value. This can be achieved by

enabling the developers to focus on the things that they truly care about and that they

are best at – instead of spending their expensive and valuable time on tedious,

repetitive tasks that could be automated or outsourced.

The wave of cloud servers and other cloud services has managed to diminish the

maintenance costs by making in-house servers, devices, tools, network and data

storage unnecessary. By that I do not only mean the actual cost of the hardware but

also the cost of the needed software and the cost of the workforce who is responsible

for configuring and maintaining the infrastructure.

“Cloud-based services can help you save money on many fronts, including server

maintenance, power and cooling costs, and software licensing and upgrade expenses.

(...) Rather than spending money to maintain hardware that often goes unused,

subscribing to software and services for a low monthly fee can help small businesses

stretch their budgets further.” (American Express Company, 2011)

On top of the changes in cost efficiency, the cost structure has also changed. Some of

the typical fixed costs have turned into variable cost due to the rise of ‘pay as you go’

cloud services. To clarify: “fixed costs [are] not tied to production [while] variable costs

fluctuate according to how much you produce”. (Thompson, 2015) What it means for

web development projects is that a significant portion of the total costs depend on the

traffic and performance of the application. If your website or web services generates

money for you also on a per user or per performance basis, then in very simple terms

─ 44 ─

we can say that you pay less when you have less income and you pay more when you

have higher income. Its advantage is that the barrier to entry goes down in the industry

and new players can start building their projects with relatively low costs and they only

need to pay more when their projects turn out to be successful.

Cloud computing and the use of third-party tools and services is ideal for companies

big and small because they save cost and give extra convenience and allow you to focus

on what you do best. Where I personally see a distinction though is the use of proper

automated testing, code quality assurance, reporting and monitoring tools and

automated deployment solutions. I feel that in the field of web development teams

developing their own products used to be more likely to incorporate these practices

because for them the long-term effects are more important and therefore they were

willing to invest time, money and learning into these to reach better quality and

efficiency. On the contrary, teams working on client projects tended to have the “get it

done as quickly as possible” attitude due to the deadlines and the lack of emotional

attachment to the projects. In my opinion thanks to the rapid growth and advancement

in the field, these practices are no longer considered to be a luxury and more and more

companies in diverse fields can afford to have them and realize that the investment

breeds actual competitive advantage. What I am trying to say is that the necessary

investment both in terms of money and knowledge has dropped and now practically

anyone has access to these services either for free or at a low price and it has become

so easy to start using them that even novice developers can utilize them.

 Quality 4.3.

Even though price, speed of delivery and other factors often get higher priority than

quality, I still insist that quality is very valuable to the right customers and high quality

is a great value that the business can sell. This is why it is important for the business

that the web developers create a quality product that in return creates value for the

customer and thus to the business.

I have already written about how automated tests reduce the number of times when

something unexpected happens and makes it easier to spot faulty parts, how using

third-party software that is widely used, tried and tested can decrease the number of

bugs and leaks and how we can achieve more consistency by automating complex

processes are extremely prone to human error. These all help the business to have a

strong value proposition based on quality that appeals to the customer.

─ 45 ─

Sommerville collected a number of software quality attributes in the ninth edition of

the Software Engineering book (2011), and these apply to web development and web

products too:

Figure 23. Software quality attributes. (Sommerville, 2011)

We can see that many of these attributes, like robustness, reliability, testability,

resilience, security, modularity, portability, reusability and efficiency are addressed and

improved by the technology shifts discussed earlier in this paper.

 Internal processes 4.4.

4.4.1. Metrics

The new set of tools and services that I demonstrated in the technology trends

chapter make it possible to monitor, measure, track and analyze systems and processes

a lot more accurately. This is an important factor because in order to understand the

actual performance of a system, team or company, you need good and reliable metrics.

In recent years many companies have started consciously sticking to data-driven

decisions, and obviously they apply this approach to the web development teams and

projects too.

A commonly practiced way of setting goals and measuring results is defining KPIs (Key

Performance Indicators). With these advanced tools and services a lot of data is

available automatically and thus gathering data for the metrics is not a big burden any

longer. To name a few examples, deployment speed, deployment success rate,

deployment frequency, rollback / regression frequency, test coverage, number of tests,

test execution time, code duplication rate, availability, average response time, number

─ 46 ─

of reported bugs, number of runtime exceptions and development velocity (based on

story points) can all be used as KPI of the web development team and the figures can

easily be retrieved from the various continuous integration, monitoring and analytics

tools.

We use several of these metrics at JóSzaki and they provide us with a really good base

for comparison both to our previous results and to other teams, and they serve as

indicators on our development speed and quality. Knowing our velocity, for instance,

helps us with resource planning and also helps us draw conclusions about the efficiency

of our methods and processes. What is more, we define team goals based on these

metrics and seeing how we are improving adds an extra incentive and motivation to

our daily work.

One last aspect I would like to mention in this topic is that web service providers can

commit themselves to more realistic availability and performance criteria when they

have reliable metrics about every part of their systems. Not only does it help when

defining an SLA (Service Level Agreement) but it also helps to spot the bottlenecks and

weakest links that need immediate attention.

4.4.2. Flexibility and velocity

Automation, cloud technologies and third-party solutions have all contributed to an

increase in speed of development (velocity), and the flexibility is also improved by

things like continuous integration and deployment. This increased agility is important

for the business because it can mean shorter release cycles, flexible release options,

the ability to satisfy urgent business needs almost instantly and the ability to fix

business critical bugs and issues quickly.

In today’s constantly changing and volatile environment it is essential to have the

ability to run quick and short experiments and iterate easily on new features and

improvements. The business and product development teams can come up with new

ideas and can rapidly go through the “build - measure - learn” methodology introduced

by the book called The Lean Startup (Ries, 2011). They can get their experiments to

production in a minimum amount of time and can change their minds based on the

results and can rollback or modify things.

─ 47 ─

On top of these advantages, the short cycles and frequent deployments also reduce

the risks of a change. What is more, these often expose hidden inefficiencies and costs

which can then be addressed and fixed.

4.4.3. People as Single Points of Failure

In the IT world the ‘single point of failure’ term is often used to refer to an “element

or part of a system for which no backup (redundancy) exists and the failure of which

will disable the entire system.” (Business Dictionary, 2016) Obviously a single point of

failure is a thing to be avoided because it threatens the security and stability of the

whole systems.

Where is becomes interesting is that it does not only apply to computer systems but

to organizations too. A person can easily be a single point of failure if their absence or

departure would paralyze the organization or the actual computer system.

In 2013 Tomas Kucera wrote that “your responsibility as a leader is to identify key

people and plan for their unexpected demise. The goal is not to have key people at all.”

As I see it, many web development projects have transitioned from a state of using

completely custom and unique, complex and unclean code bases to a state of using

well-known frameworks even for bespoke software, relying on properly documented

and widely used libraries and cloud services, adapting common principles and coding

conventions, having extensive test suites and automated deployment processes. These

somewhat standardized, documented and industry standard processes and tools result

in an environment where workforce is a little bit easier to replace and dependency on a

particular developer is reduced.

It is important to note that I do not think developers should be perceived and treated

as cogs in a machine that can easily be replaced anytime, because they carry an

incredible wealth of experience, knowledge and relationships specific to the

organization. I like how Amy Rees Anderson in a 2013 article wrote that “great

employees are not replaceable (...) it is great people that make a great company”. I

totally agree with it but I also know that what she writes later on is also true: “there

will be some life events that take great employees away from a company, which cannot

be stopped”. This thought and all the cases when a developer is absent for a shorter or

longer time amplify the need for an environment where people are less likely to be

single points of failure.

─ 48 ─

4.4.4. Employer branding

I think this is a really important aspect but the meaning of the term might not be clear

at first sight. This is how a recruitment guide on Realstaffing.com defines it: “An

employer brand refers to the perceptions key stakeholders, and more specifically

current and potential employees, have of your organisation. It is about how they view

the company; from how you conduct yourselves in the market, through to what they

think it would be like to work for your organisation. An effective employer brand

presents your organisation as a good employer and a great place to work and can, as a

result, help with recruitment, retention and generally affect market perception of your

company.” (Realstaffing.com, 2016)

I believe that having a great environment can make the company more appealing and

attractive to developers. What I mean by great environment in this case is that the

developers can use advanced, cutting-edge technologies and tools, they are

encouraged and supported to follow the trends and keep learning and experimenting,

and their mundane tasks are automated so that they can spend their time with exciting

challenges.

As a consequence, it will be easier to attract and hire talent and retain existing

employees. It is of particularly high importance nowadays as companies are faced with

scarcity of quality workforce in the field of web development. As far as I know this is

happening all over the world in the whole IT industry, but what I am sure about is that

this is the case in Hungary.

According to an index.hu article published in March 2016 the Hungarian companies

could employ 22.000 more people in IT positions while in the European Union there is a

need for an additional 600.000 - 700.000 software developers. I haven’t found any data

about the web developers in particular, but based on my own experiences, the

situation is just about the same and companies find it difficult to hire good developers.

This is the end of ‘The business perspective’ chapter. We can see that not only does

the technology change rapidly but businesses are also strongly affected by the wind of

change. New opportunities and advantages emerge while businesses need to face new

challenges and difficulties as well, such as privacy, security, responsibility and

dependency concerns.

─ 49 ─

5. Summary

The few selected areas that I covered in this paper gave an overview the current state

of web development and also gave a glimpse into what is in the toolbox of a modern

day web developer. The rapid improvement and transformation of the technologies,

best practices and tools make web development both a challenging and an exciting

occupation.

As I see it, the main threads of the advancement are automation, cloud computing,

distributed and scalable systems, and last but not least open-source software and

extensive collaboration that joins forces, connects knowledge and experience and

creates ambitious, far-reaching and valuable products and services.

We could also see that the technology shifts that we are experiencing have affected

businesses too in numerous ways. Those who can adapt to this ever-changing

environment and can take advantage of the opportunities have a great chance of

success as there is still a wealth of unleashed potential on the web. This is where this

paper can help – by becoming familiar with the trends and becoming well-versed with

the available technology, both individuals and businesses can gain a deeper

understanding of the web development environment and will be able to spot and

exploit opportunities.

Since I did not go into the specific software engineering details, the technology

overview is suitable even for non-developer participants of web development projects.

Knowing how today’s technology works and how the different areas relate to each

other can help them identify with the challenges and struggles of developers and can

also help them originate innovative ideas.

I am fairly sure that the presented evolution of the web is going to continue. We are

just about to go deeper into the era of the Semantic Web (Web 3.0) which connects

knowledge and then over time we are going to get closer to the Web 4.0 era, the era of

The Ubiquitous Web (4.0) which is forecasted to connect intelligence to an extent that

is yet unknown.

I also expect that Artificial Intelligence (AI) solutions are going to become even more

common and useful and will be present in almost every segment of the web

development landscape. Two examples of its manifestation are communication and

─ 50 ─

integration bots (which are already apparent in many web application, like Slack and

Facebook Messenger) and intelligent software robots that are likely to replace human

workforce in trivial, repetitive web development tasks.

─ 51 ─

6. List of figures

Figure 1. ‘Semantics of Social Connections’ and ‘Semantics of Information Connections’.

Source: Spivack (2016)

Figure 2. What is the Evolution of the Internet to 2020? Source: Davis (2008)

Figure 3. Total Number of Websites. Source: NetCraft and Internet Live Stats (2016)

Figure 4. The most popular programming languages. Source: Stack Overflow (2016)

Figure 5. Programming Language vs High Traffic Websites. Source: Millares (2015)

Figure 6. DB-Engines Ranking. Source: SolidIT (2016)

Figure 7. DB-Engines Ranking. Source: SolidIT (2016)

Figure 8. Step 1: Use of RDBMS for every aspect of storage for the application. Source:

Sadalage - Fowler (2012)

Figure 9. Step 2: Example implementation of polyglot persistence. Source: Sadalage -

Fowler (2012)

Figure 10. Step 3: Using services instead of talking to databases. Source: Sadalage -

Fowler (2012)

Figure 11. MVC pattern (Model - View - Controller). Source: Moock.org (2016)

Figure 12. PHP Framework Popularity at Work. Source: Skvorc (2015)

Figure 13. Web search interest over time for PHP frameworks. (My own work, 2016)

Figure 14. Most popular content management systems. Source: W3Techs.com (2016)

Figure 15. Market share of CMS systems. Source: OpenSource CMS (2016)

Figure 16. Usage of operating systems for websites. Source: W3Techs (2016)

Figure 17. Web server developers: Market share of all sites. Source: NetCraft (2016)

Figure 18. Web server developers: Market share of all sites. Source: NetCraft (2016)

─ 52 ─

Figure 19. Web server developers: Market share of the top million busiest sites. Source:

NetCraft (2016)

Figure 20. Web server developers: Market share of the top million busiest sites. Source:

NetCraft (2016)

Figure 21. Frequency Reduces Difficulty. Source: Fowler (2011)

Figure 22. Vertical and Horizontal Scaling. (My own work, 2016)

Figure 23. Software quality attributes. (Sommerville, 2011)

─ 53 ─

7. References

American Express Company (2011): OPEN Insight Guide - Running Your Business in the

Cloud

https://c401345.ssl.cf1.rackcdn.com/pdf/OPEN_Savings_Cloud_Insight_Guide.pdf

Downloaded on 22 April 2016

Ammann, P. - Offutt, J. (2008): Introduction to Software Testing, Cambridge University

Press

Anderson, A. R. (2013): Great Employees Are Not Replaceable

http://www.forbes.com/sites/amyanderson/2013/02/13/great-employees-are-not-

replaceable/#16db46407230

Downloaded on 7 April 2016

Beaumont, D. (2014): Thoughts On Cloud

http://www.thoughtsoncloud.com/2014/04/explain-vertical-horizontal-scaling-cloud/

Downloaded on 20 April 2016

Business Dictionary: single point of failure

http://www.businessdictionary.com/definition/single-point-of-failure.html

Downloaded on 7 April 2016

Chacon, S. - Straub, B. (2014): Pro Git, Second Edition, Apress Media LLC

David, M. (2008): Summary of Project10X’s Semantic Wave 2008 Report: Industry

Roadmap to Web 3.0 & Multibillion Dollar Market Opportunities

http://www.itu.dk/people/cmmm/Mills%20Davis%20Web%203.0.pdf

Downloaded on 17 April 2016

Griffith, E. (2015): What Is Cloud Computing?

http://www.pcmag.com/article2/0,2817,2372163,00.asp

Downloaded on 19 April 2016

Fowler, M. (2011): FrequencyReducesDifficulty

http://www.martinfowler.com/bliki/FrequencyReducesDifficulty.html

Downloaded on 3 April 2016

https://c401345.ssl.cf1.rackcdn.com/pdf/OPEN_Savings_Cloud_Insight_Guide.pdf
http://www.forbes.com/sites/amyanderson/2013/02/13/great-employees-are-not-replaceable/#16db46407230
http://www.forbes.com/sites/amyanderson/2013/02/13/great-employees-are-not-replaceable/#16db46407230
http://www.thoughtsoncloud.com/2014/04/explain-vertical-horizontal-scaling-cloud/
http://www.businessdictionary.com/definition/single-point-of-failure.html
http://www.itu.dk/people/cmmm/Mills%20Davis%20Web%203.0.pdf
http://www.pcmag.com/article2/0,2817,2372163,00.asp
http://www.martinfowler.com/bliki/FrequencyReducesDifficulty.html

─ 54 ─

Francia, S. (2010): REST Vs SOAP, The Difference Between Soap And Rest

http://spf13.com/post/soap-vs-rest

Downloaded on 28 April 2016

Humble, J. - Farley, D. (2010): Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation, Addison-Wesley Professional

Jacobson, D. - Brail, G. - Woods, D. (2012): APIs: A Strategy Guide, O’Reilly Media

Kepes, B. (2015): New Stats From The State Of Cloud Report

http://www.forbes.com/sites/benkepes/2015/03/04/new-stats-from-the-state-of-

cloud-report/#4797721126f9

Downloaded on 19 April 2016

Kucera, T. (2013): How to avoid “single point of failure” situations in your team?

https://thegeekyleader.com/2013/07/28/how-to-avoid-single-point-of-failure-

situations-in-your-team/

Downloaded on 7 April 2016

Megyesi, M. (2012): Why Frameworks? https://blog.8thlight.com/myles-

megyesi/2012/09/12/why-frameworks.html

Downloaded on 21 April 2016

Millares, G. (2015): Top 5 Programming Languages Used In Web Development

http://blog.stoneriverelearning.com/top-5-programming-languages-used-in-web-

development/

Downloaded on 14 April 2016

Moock.org: Model/view/controller design pattern ("MVC")

http://www.moock.org/lectures/mvc/

Downloaded on 19 April 2016

Morrow, K. (2014): Web 2.0, Web 3.0, and the Internet of Things

http://www.uxbooth.com/articles/web-2-0-web-3-0-and-the-internet-of-things/

Downloaded on 15 April 2016

Netcraft (2016): March 2016 Web Server Survey

http://news.netcraft.com/archives/2016/03/18/march-2016-web-server-survey.html

Downloaded on 30 April 2016

http://spf13.com/post/soap-vs-rest
http://www.forbes.com/sites/benkepes/2015/03/04/new-stats-from-the-state-of-cloud-report/#4797721126f9
http://www.forbes.com/sites/benkepes/2015/03/04/new-stats-from-the-state-of-cloud-report/#4797721126f9
https://thegeekyleader.com/2013/07/28/how-to-avoid-single-point-of-failure-situations-in-your-team/
https://thegeekyleader.com/2013/07/28/how-to-avoid-single-point-of-failure-situations-in-your-team/
https://blog.8thlight.com/myles-megyesi/2012/09/12/why-frameworks.html
https://blog.8thlight.com/myles-megyesi/2012/09/12/why-frameworks.html
http://blog.stoneriverelearning.com/top-5-programming-languages-used-in-web-development/
http://blog.stoneriverelearning.com/top-5-programming-languages-used-in-web-development/
http://www.moock.org/lectures/mvc/
http://www.uxbooth.com/articles/web-2-0-web-3-0-and-the-internet-of-things/
http://news.netcraft.com/archives/2016/03/18/march-2016-web-server-survey.html

─ 55 ─

Netcraft - Internet Live Stats (2016): Total number of Websites

http://www.internetlivestats.com/total-number-of-websites/

Downloaded on 15 April 2016

Newman, S. (2015): Building Microservices, O’Reilly Media

OpenSource CMS (2016): CMS Market Share

http://www.opensourcecms.com/general/cms-marketshare.php

Downloaded on 25 April 2016

Proffitt, B. (2013): What APIs Are And Why They’re Important

http://readwrite.com/2013/09/19/api-defined/

Downloaded on 28 April 2016

Rakowski, K. (2011): Getting Started With PHP Templating

https://www.smashingmagazine.com/2011/10/getting-started-with-php-templating/

Downloaded on 21 April 2016

Realstaffing.com: Building a compelling employer brand

http://www.realstaffing.com/employers/recruitment-guides/building-a-compelling-

employer-brand

Downloaded on 8 April 2016

Reference for Business: Synergy

http://www.referenceforbusiness.com/management/Str-Ti/Synergy.html

Downloaded on 2 April 2016

Ries, E. (2011): The Lean Startup, Crown Business

Sadalage, P. (2014): NoSQL Databases: An Overview

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

Downloaded on 17 April 2016

Sadalage, P. - Fowler, M. (2012): NoSQL Distilled - A Brief Guide to the Emerging World

of Polyglot Persistence, Addison-Wesley Professional

Serra, J. (2015): What is Polyglot Persistence?

http://www.jamesserra.com/archive/2015/07/what-is-polyglot-persistence/

Downloaded on 17 April 2016

http://www.internetlivestats.com/total-number-of-websites/
http://www.opensourcecms.com/general/cms-marketshare.php
http://readwrite.com/2013/09/19/api-defined/
https://www.smashingmagazine.com/2011/10/getting-started-with-php-templating/
http://www.realstaffing.com/employers/recruitment-guides/building-a-compelling-employer-brand
http://www.realstaffing.com/employers/recruitment-guides/building-a-compelling-employer-brand
http://www.referenceforbusiness.com/management/Str-Ti/Synergy.html
https://www.thoughtworks.com/insights/blog/nosql-databases-overview
http://www.jamesserra.com/archive/2015/07/what-is-polyglot-persistence/

─ 56 ─

Shevat, A. (2008): Scale out versus scale up – How to scale your application

http://spacebug.com/scale-out-versus-scale-up-html/

Downloaded on 1 May 2016

Skvorc, B. (2015): The Best PHP Framework for 2015: SitePoint Survey Results

http://www.sitepoint.com/best-php-framework-2015-sitepoint-survey-results/

Downloaded on 21 April 2016

SolidIT (2016): DB-Engines Ranking

http://db-engines.com/en/ranking and http://db-engines.com/en/ranking_trend

Downloaded on 17 April 2016

Sommerville, I. (2011): Software Engineering, Ninth Edition, Pearson Education, Inc.

Sosinsky, B. (2011): Cloud Computing Bible, Wiley Publishing, Inc., Indianapolis

Spivack, N.: Web 3.0: The Third Generation Web is Coming

https://lifeboat.com/ex/web.3.0

Downloaded on 15 April 2016

Stack Overflow (2016): Developer Survey Results

http://stackoverflow.com/research/developer-survey-2016

Downloaded on 14 April 2016

Stubnya, B. (2016): Nem tüntetnek érte, de a jövő múlik rajta

http://index.hu/gazdasag/2016/03/04/informatikushiany_munkaeropiac_oktatas_infor

matika/

Downloaded on 1 May 2016

Thompson, M. (2015): Fixed and Variable Expenses: What Do They Mean for

Production?

http://www.business.com/finance/fixed-and-variable-expenses-what-do-they-mean/

Downloaded on 7 April 2016

ThoughtWorks: Continuous Integration

https://www.thoughtworks.com/continuous-integration

Downloaded on 29 April 2016

Turnbull, J. (2014): The Docker Book

http://books.linuxfocus.net/files/books/James.Turnbull.The.Docker.Book.Containerizati

http://spacebug.com/scale-out-versus-scale-up-html/
http://www.sitepoint.com/best-php-framework-2015-sitepoint-survey-results/
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking_trend
https://lifeboat.com/ex/web.3.0
http://stackoverflow.com/research/developer-survey-2016
http://index.hu/gazdasag/2016/03/04/informatikushiany_munkaeropiac_oktatas_informatika/
http://index.hu/gazdasag/2016/03/04/informatikushiany_munkaeropiac_oktatas_informatika/
http://www.business.com/finance/fixed-and-variable-expenses-what-do-they-mean/
https://www.thoughtworks.com/continuous-integration
http://books.linuxfocus.net/files/books/James.Turnbull.The.Docker.Book.Containerization.is.the.new.virtualization.B00LRROTI4.pdf

─ 57 ─

on.is.the.new.virtualization.B00LRROTI4.pdf

Downloaded on 29 April 2016

Vergara, D. (2012): Version Control Systems: Distributed vs. Centralized

http://oshyn.com/software-

development/version_control_systems_distributed_vs_centralized

Downloaded on 24 April 2016

Wallop, H. (2014): Gen Z, Gen Y, baby boomers – a guide to the generations

http://www.telegraph.co.uk/news/features/11002767/Gen-Z-Gen-Y-baby-boomers-a-

guide-to-the-generations.html

Downloaded on 15 April 2016

Wilsenach, R. (2015): DevOpsCulture

http://martinfowler.com/bliki/DevOpsCulture.html

Downloaded on 30 April 2016

Wootton, B. (2016): The Benefits Of Microservices

http://sendachi.com/2016/microservices/the-benefits-of-microservices

Downloaded on 30 April 2016

W3Techs (2016): Most popular content management systems

http://w3techs.com/

Downloaded on 29 April 2016

W3Techs (2016): Usage of operating systems for websites

http://w3techs.com/technologies/overview/operating_system/all

Downloaded on 30 April 2016

http://books.linuxfocus.net/files/books/James.Turnbull.The.Docker.Book.Containerization.is.the.new.virtualization.B00LRROTI4.pdf
http://oshyn.com/software-development/version_control_systems_distributed_vs_centralized
http://oshyn.com/software-development/version_control_systems_distributed_vs_centralized
http://www.telegraph.co.uk/news/features/11002767/Gen-Z-Gen-Y-baby-boomers-a-guide-to-the-generations.html
http://www.telegraph.co.uk/news/features/11002767/Gen-Z-Gen-Y-baby-boomers-a-guide-to-the-generations.html
http://martinfowler.com/bliki/DevOpsCulture.html
http://sendachi.com/2016/microservices/the-benefits-of-microservices
http://w3techs.com/
http://w3techs.com/technologies/overview/operating_system/all

